Inferring the dynamics of diversification: a coalescent approach.

PLoS Biol

Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.

Published: September 2010

Recent analyses of the fossil record and molecular phylogenies suggest that there are fundamental limits to biodiversity, possibly arising from constraints in the availability of space, resources, or ecological niches. Under this hypothesis, speciation rates decay over time and biodiversity eventually saturates, with new species emerging only when others are driven to extinction. This view of macro-evolution contradicts an alternative hypothesis that biodiversity is unbounded, with species ever accumulating as they find new niches to occupy. These contrasting theories of biodiversity dynamics yield fundamentally different explanations for the disparity in species richness across taxa and regions. Here, we test whether speciation rates have decayed or remained constant over time, and whether biodiversity is saturated or still expanding. We first derive a general likelihood expression for internode distances in a phylogeny, based on the well-known coalescent process from population genetics. This expression accounts for either time-constant or time-variable rates, time-constant or time-variable diversity, and completely or incompletely sampled phylogenies. We then compare the performance of different diversification scenarios in explaining a set of 289 phylogenies representing amphibians, arthropods, birds, mammals, mollusks, and flowering plants. Our results indicate that speciation rates typically decay over time, but that diversity is still expanding at present. The evidence for expanding-diversity models suggests that an upper limit to biodiversity has not yet been reached, or that no such limit exists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946937PMC
http://dx.doi.org/10.1371/journal.pbio.1000493DOI Listing

Publication Analysis

Top Keywords

speciation rates
12
decay time
8
time biodiversity
8
time-constant time-variable
8
biodiversity
6
inferring dynamics
4
dynamics diversification
4
diversification coalescent
4
coalescent approach
4
approach analyses
4

Similar Publications

Premise: Considering rapidly changing fire regimes due to anthropogenic disturbances to climate and fuel loads, it is crucial to understand the underpinnings driving fire-adapted trait evolution. Among the oldest lineages affected by fire is Coniferae. This lineage occupies a variety of fire prone and non-fire prone habitats across all hemispheres and has four fire-adapted traits: (1) thick bark; (2) serotiny; (3) seedling grass stage; and (4) resprouting ability.

View Article and Find Full Text PDF

Background And Purpose: is a recently emerging nosocomial fungal pathogen. Candidemia is the fourth most prevalent cause of bloodstream Infections with mortality rates varying from 5-71%.

Materials And Methods: This was a retrospective study conducted at Uttar Pradesh University of Medical Sciences, Etawah, India, from September 2023 to February 2024.

View Article and Find Full Text PDF

Phosphorus (P) plays an essential role for plant growth, but conventional P sources used in agriculture are finite and non-renewable. As a result, there is a growing need to explore alternative P sources such as sewage sludge (SS) - a P-rich solid waste and valuable renewable resource that is often mismanaged globally. Pyrolysis is a promising technique for managing SS.

View Article and Find Full Text PDF

The Metapopulation Bridge to Macroevolutionary Speciation Rates: A Conceptual Framework and Empirical Test.

Ecol Lett

January 2025

Museum of Zoology & Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA.

Whether large-scale variation in lineage diversification rates can be predicted by species properties at the population level is a key unresolved question at the interface between micro- and macroevolution. All else being equal, species with biological attributes that confer metapopulation stability should persist more often at timescales relevant to speciation and so give rise to new (incipient) forms that share these biological traits. Here, we develop a framework for testing the relationship between metapopulation properties related to persistence and phylogenetic speciation rates.

View Article and Find Full Text PDF

Completing a molecular timetree of primates.

Front Bioinform

December 2024

Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States.

Primates, consisting of apes, monkeys, tarsiers, and lemurs, are among the most charismatic and well-studied animals on Earth, yet there is no taxonomically complete molecular timetree for the group. Combining the latest large-scale genomic primate phylogeny of 205 recognized species with the 400-species literature consensus tree available from TimeTree.org yields a phylogeny of just 405 primates, with 50 species still missing despite having molecular sequence data in the NCBI GenBank.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!