Recent analyses of the fossil record and molecular phylogenies suggest that there are fundamental limits to biodiversity, possibly arising from constraints in the availability of space, resources, or ecological niches. Under this hypothesis, speciation rates decay over time and biodiversity eventually saturates, with new species emerging only when others are driven to extinction. This view of macro-evolution contradicts an alternative hypothesis that biodiversity is unbounded, with species ever accumulating as they find new niches to occupy. These contrasting theories of biodiversity dynamics yield fundamentally different explanations for the disparity in species richness across taxa and regions. Here, we test whether speciation rates have decayed or remained constant over time, and whether biodiversity is saturated or still expanding. We first derive a general likelihood expression for internode distances in a phylogeny, based on the well-known coalescent process from population genetics. This expression accounts for either time-constant or time-variable rates, time-constant or time-variable diversity, and completely or incompletely sampled phylogenies. We then compare the performance of different diversification scenarios in explaining a set of 289 phylogenies representing amphibians, arthropods, birds, mammals, mollusks, and flowering plants. Our results indicate that speciation rates typically decay over time, but that diversity is still expanding at present. The evidence for expanding-diversity models suggests that an upper limit to biodiversity has not yet been reached, or that no such limit exists.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946937 | PMC |
http://dx.doi.org/10.1371/journal.pbio.1000493 | DOI Listing |
Am J Bot
January 2025
Department of Biology, University of Idaho, Moscow, 83844, Idaho, USA.
Premise: Considering rapidly changing fire regimes due to anthropogenic disturbances to climate and fuel loads, it is crucial to understand the underpinnings driving fire-adapted trait evolution. Among the oldest lineages affected by fire is Coniferae. This lineage occupies a variety of fire prone and non-fire prone habitats across all hemispheres and has four fire-adapted traits: (1) thick bark; (2) serotiny; (3) seedling grass stage; and (4) resprouting ability.
View Article and Find Full Text PDFCurr Med Mycol
May 2024
Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India.
Background And Purpose: is a recently emerging nosocomial fungal pathogen. Candidemia is the fourth most prevalent cause of bloodstream Infections with mortality rates varying from 5-71%.
Materials And Methods: This was a retrospective study conducted at Uttar Pradesh University of Medical Sciences, Etawah, India, from September 2023 to February 2024.
Chemosphere
January 2025
Faculty of Agronomy and Veterinary Medicine, University of Brasília, 70910-970, Brasília, Federal District, Brazil.
Phosphorus (P) plays an essential role for plant growth, but conventional P sources used in agriculture are finite and non-renewable. As a result, there is a growing need to explore alternative P sources such as sewage sludge (SS) - a P-rich solid waste and valuable renewable resource that is often mismanaged globally. Pyrolysis is a promising technique for managing SS.
View Article and Find Full Text PDFEcol Lett
January 2025
Museum of Zoology & Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA.
Whether large-scale variation in lineage diversification rates can be predicted by species properties at the population level is a key unresolved question at the interface between micro- and macroevolution. All else being equal, species with biological attributes that confer metapopulation stability should persist more often at timescales relevant to speciation and so give rise to new (incipient) forms that share these biological traits. Here, we develop a framework for testing the relationship between metapopulation properties related to persistence and phylogenetic speciation rates.
View Article and Find Full Text PDFFront Bioinform
December 2024
Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States.
Primates, consisting of apes, monkeys, tarsiers, and lemurs, are among the most charismatic and well-studied animals on Earth, yet there is no taxonomically complete molecular timetree for the group. Combining the latest large-scale genomic primate phylogeny of 205 recognized species with the 400-species literature consensus tree available from TimeTree.org yields a phylogeny of just 405 primates, with 50 species still missing despite having molecular sequence data in the NCBI GenBank.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!