Recent experiments have shown that spike-timing-dependent plasticity is influenced by neuromodulation. We derive theoretical conditions for successful learning of reward-related behavior for a large class of learning rules where Hebbian synaptic plasticity is conditioned on a global modulatory factor signaling reward. We show that all learning rules in this class can be separated into a term that captures the covariance of neuronal firing and reward and a second term that presents the influence of unsupervised learning. The unsupervised term, which is, in general, detrimental for reward-based learning, can be suppressed if the neuromodulatory signal encodes the difference between the reward and the expected reward-but only if the expected reward is calculated for each task and stimulus separately. If several tasks are to be learned simultaneously, the nervous system needs an internal critic that is able to predict the expected reward for arbitrary stimuli. We show that, with a critic, reward-modulated spike-timing-dependent plasticity is capable of learning motor trajectories with a temporal resolution of tens of milliseconds. The relation to temporal difference learning, the relevance of block-based learning paradigms, and the limitations of learning with a critic are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6634722PMC
http://dx.doi.org/10.1523/JNEUROSCI.6249-09.2010DOI Listing

Publication Analysis

Top Keywords

spike-timing-dependent plasticity
12
learning
9
reward-modulated spike-timing-dependent
8
learning rules
8
expected reward
8
reward
5
functional requirements
4
requirements reward-modulated
4
plasticity
4
plasticity experiments
4

Similar Publications

Synaptic plasticity plays a fundamental role in neuronal dynamics, governing how connections between neurons evolve in response to experience. In this study, we extend a network model of θ-neuron oscillators to include a realistic form of adaptive plasticity. In place of the less tractable spike-timing-dependent plasticity, we employ recently validated phase-difference-dependent plasticity rules, which adjust coupling strengths based on the relative phases of θ-neuron oscillators.

View Article and Find Full Text PDF

Multifunctional Artificial Electric Synapse of MoSe-Based Memristor toward Neuromorphic Application.

J Phys Chem Lett

January 2025

Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.

Research on memristive devices to seamlessly integrate and replicate the dynamic behaviors of biological synapses will illuminate the mechanisms underlying parallel processing and information storage in the human brain, thereby affording novel insights for the advancement of artificial intelligence. Here, an artificial electric synapse is demonstrated on a one-step Mo-selenized MoSe memristor, having not only long-term stable resistive switching characteristics (reset 0.51 ± 0.

View Article and Find Full Text PDF

Spiking neurons are essential for building energy-efficient biomimetic spatiotemporal systems because they communicate with other neurons using sparse and binary signals. However, the achievable high density of artificial neurons having a capacitor for emulating the integrate function of biological neurons has a limit. Furthermore, a low-voltage operation (<1.

View Article and Find Full Text PDF

Weight Transfer in the Reinforcement Learning Model of Songbird Acquisition.

bioRxiv

December 2024

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.

Song acquisition behavior observed in the songbird system provides a notable example of learning through trial- and-error which parallels human speech acquisition. Studying songbird vocal learning can offer insights into mechanisms underlying human language. We present a computational model of song learning that integrates reinforcement learning (RL) and Hebbian learning and agrees with known songbird circuitry.

View Article and Find Full Text PDF

At cellular and circuit levels, drug addiction is considered a dysregulation of synaptic plasticity. In addition, dysfunction of the glutamate transporter 1 (GLT-1) in the nucleus accumbens (NAc) has also been proposed as a mechanism underlying drug addiction. However, the cellular and synaptic impact of GLT-1 alterations in the NAc remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!