The three variable regions of hepatitis C virus (HCV) glycoprotein E2 can be removed simultaneously from the E2 ectodomain (residues 384-661) without affecting folding or CD81 binding. In this study, we show that deletion of hypervariable region (HVR) 2 or the intergenotypic variable region (igVR) in the context of the E1E2 polyprotein eliminates formation of heterodimers, reduces CD81 binding and abolishes virus entry. The replication competence of genomic RNA transcribed from the JFH1 infectious HCV clone was not affected by the HVR1, HVR2 or igVR deletions in transfected Huh7.5 cells. However, infectivity of the resultant cell-culture-derived HCV (HCVcc) was abolished by HVR2 or igVR deletions, while deletion of HVR1 led to a 5- to 10-fold reduction in infectivity. Serial passage of cells transfected with genomes lacking HVR1 generated reverted viruses with wild-type levels of infectivity. Sequencing of viral cDNA obtained after full reversion revealed mutations in E1 (I262L) and E2 (N415D) that were present in 35 and 27 % of clones, respectively. Insertion of N415D into HVR1-deleted HCV genomes conferred wild-type levels of infectivity, while I262L increased infectivity by 2.5-fold. These results suggest that HVR2 and the igVR, but not HVR1, are essential for structural integrity and function of the HCV glycoprotein heterodimer.

Download full-text PDF

Source
http://dx.doi.org/10.1099/vir.0.026385-0DOI Listing

Publication Analysis

Top Keywords

hvr2 igvr
12
variable regions
8
regions hepatitis
8
hepatitis virus
8
essential structural
8
hcv glycoprotein
8
cd81 binding
8
igvr deletions
8
wild-type levels
8
levels infectivity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!