Previous genomic analyses of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 have identified three ferric uptake regulator (Fur) homologs with low sequence identities and probably different functions in the cell. FurA is a constitutive protein that shares the highest homology with Fur from heterotrophic bacteria and appears to be essential for in vitro growth. In this study, we have analysed the effects of FurA overexpression on the Anabaena sp. phenotype and investigated which of the observed alterations were directly operated by FurA. Overexpression of the regulator led to changes in cellular morphology, resulting in shorter filaments with rounded cells of different sizes. The furA-overexpressing strain showed a slower photoautotrophic growth and a marked decrease in the oxygen evolution rate. Overexpression of the regulator also decreased both catalase and superoxide dismutase activities, but did not lead to an increase in the levels of intracellular reactive oxygen species. By combining phenotypic studies, reverse transcription-PCR analyses and electrophoretic mobility shift assays, we identified three novel direct targets of FurA, including genes encoding a siderophore outer membrane transporter (schT), bacterial actins (mreBCD) and the PSII reaction center protein D1 (psbA). The affinity of FurA for these novel targets was markedly affected by the absence of divalent metal ions, confirming previous evidence of a critical role for the metal co-repressor in the function of the regulator in vivo. The results unravel new cellular processes modulated by FurA, supporting its role as a global transcriptional regulator in Anabaena sp. PCC 7120.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcq148 | DOI Listing |
Bioresour Technol
December 2024
Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel. Electronic address:
This study explored a sustainable alternative to the Haber-Bosch process by enhancing the production of the nitrogen-rich polymer cyanophycin (CGP) in the diazotrophic cyanobacterium Nostoc sp. PCC 7120. Applying UV-mutagenesis followed by canavanine selection, we isolate an initial mutant with enhanced CGP accumulation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India. Electronic address:
Native amine dehydrogenases (AmDHs) are rare and typically have narrow substrate specificity and low processivity. Therefore, they are often modified using protein engineering for industrial and pharmaceutical applications. This study presents identification and characterization of a novel native amine dehydrogenase (AmDH) encoding WD40 protein (All1750) from Anabaena PCC 7120.
View Article and Find Full Text PDFMol Microbiol
January 2025
Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain.
Cyanobacteria developed oxygenic photosynthesis and represent the phylogenetic ancestors of chloroplasts. The model strain Anabaena sp. strain PCC 7120 grows as filaments of communicating cells and can form heterocysts, cells specialized for N fixation.
View Article and Find Full Text PDFMicrobiol Res
January 2025
State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, Hubei, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China. Electronic address:
PacR (All3953) has previously been identified as a global transcriptional regulator of carbon assimilation in cyanobacteria. In the facultative diazotrophic and filamentous cyanobacterium Anabaena PCC 7120 (Anabaena), inactivation of pacR has been shown to affect cell growth under various conditions. Nitrogen fixation in Anabaena occurs in heterocysts, cells differentiated semiregularly along the filaments following deprivation of combined nitrogen such as nitrate or ammonium.
View Article and Find Full Text PDFNPJ Microgravity
November 2024
Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Bremen, Germany.
In situ resource utilization systems based on cyanobacteria could support the sustainability of crewed missions to Mars. However, their resource-efficiency will depend on the extent to which gases from the Martian atmosphere must be processed to support cyanobacterial growth. The main purpose of the present work is to help assess this extent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!