Oxidative stress inhibits vascular K(ATP) channels by S-glutathionylation.

J Biol Chem

Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA.

Published: December 2010

The K(ATP) channel is an important player in vascular tone regulation. Its opening and closure lead to vasodilation and vasoconstriction, respectively. Such functions may be disrupted in oxidative stress seen in a variety of cardiovascular diseases, while the underlying mechanism remains unclear. Here, we demonstrated that S-glutathionylation was a modulation mechanism underlying oxidant-mediated vascular K(ATP) channel regulation. An exposure of isolated mesenteric rings to hydrogen peroxide (H(2)O(2)) impaired the K(ATP) channel-mediated vascular dilation. In whole-cell recordings and inside-out patches, H(2)O(2) or diamide caused a strong inhibition of the vascular K(ATP) channel (Kir6.1/SUR2B) in the presence, but not in the absence, of glutathione (GSH). Similar channel inhibition was seen with oxidized glutathione (GSSG) and thiol-modulating reagents. The oxidant-mediated channel inhibition was reversed by the reducing agent dithiothreitol (DTT) and the specific deglutathionylation reagent glutaredoxin-1 (Grx1). Consistent with S-glutathionylation, streptavidin pull-down assays with biotinylated glutathione ethyl ester (BioGEE) showed incorporation of GSH to the Kir6.1 subunit in the presence of H(2)O(2). These results suggest that S-glutathionylation is an important mechanism for the vascular K(ATP) channel modulation in oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992296PMC
http://dx.doi.org/10.1074/jbc.M110.162578DOI Listing

Publication Analysis

Top Keywords

vascular katp
16
katp channel
16
oxidative stress
12
channel inhibition
8
vascular
6
katp
6
channel
6
stress inhibits
4
inhibits vascular
4
katp channels
4

Similar Publications

Cinnamic acid lowers blood pressure and reverses vascular endothelial dysfunction in rats.

J Food Drug Anal

December 2024

Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad-22060, KP, Pakistan.

Cinnamic acid (CA) possesses important cardiovascular effects such as cardioprotective, antiatherogenic, antihyperlipidemic and antioxidant, which predicts its potential role in the treatment of hypertension. The study was executed to investigate the antihypertensive potential of CA in Sprague Dawley (SD) rats followed by evaluation in diverse vascular preparations. Invasive blood pressure monitoring technique was used in normotensive and hypertensive rats, under anesthesia.

View Article and Find Full Text PDF

The routing of blood flow throughout the brain vasculature is precisely controlled by mechanisms that serve to maintain a fine balance between local neuronal demands and vascular supply of nutrients. We recently identified two capillary endothelial cell (cEC)-based mechanisms that control cerebral blood flow in vivo: 1) electrical signaling, mediated by extracellular K-dependent activation of strong inward rectifying K (Kir2.1) channels, which are steeply activated by hyperpolarization and thus are capable of cell-to-cell propagation, and 2) calcium (Ca) signaling, which reflects release of Ca via the inositol 1,4,5-trisphosphate receptor (IPR)-a target of G-protein-coupled receptor signaling.

View Article and Find Full Text PDF

The brain has evolved mechanisms to dynamically modify blood flow, enabling the timely delivery of energy substrates in response to local metabolic demands. Several such neurovascular coupling (NVC) mechanisms have been identified, but the vascular signal transduction and transmission mechanisms that enable dilation of penetrating arterioles (PAs) remote from sites of increased neuronal activity are unclear. Given the exponential relationship between vessel diameter and blood flow, tight control of arteriole membrane potential and diameter is a crucial aspect of NVC.

View Article and Find Full Text PDF

This study focused on examining the protection of QiShenYiQi dripping pills (QSYQ) against myocardial infarction (MI) and investigating its potential mechanisms. Ultra high performance liquid chromatography-q exactive-orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was employed to analyze potential active compounds of QSYQ. The targets of these compounds were predicted using an integrated method and cross-referenced with relevant databases to identify associated pathways.

View Article and Find Full Text PDF

Anesthesia can influence cerebral blood flow by altering vessel diameter. Using in vivo two-photon imaging, we examined the effects of volatile anesthetics, sevoflurane and isoflurane, on vessel diameter in young and adult mice. Our results show that these anesthetics induce robust dilation of cortical arterioles and arteriole-proximate capillaries in adult mice, with milder effects in juveniles and no dilation in infants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!