Ca(2+) influx by store-operated Ca(2+) channels is a key component of the receptor-evoked Ca(2+) signal. In all cells examined, transient receptor potential canonical (TRPC) channels mediate a significant portion of the receptor-stimulated Ca(2+) influx. Recent studies have revealed how STIM1 activates TRPC1 in response to store depletion; however, the role of STIM1 in TRPC channel activation by receptor stimulation is not fully understood. Here, we established mutants of TRPC channels that could not be activated by STIM1 but were activated by the "charge-swap" mutant STIM1(K684E,K685E). Significantly, WT but not mutant TRPC channels were inhibited by scavenging STIM1 with Orai1(R91W), indicating the STIM1 dependence and independence of WT and mutant TRPC channels, respectively. Importantly, mutant TRPC channels were robustly activated by receptor stimulation. Moreover, STIM1 and STIM1(K684E,K685E) reciprocally affected receptor-activated WT and mutant TRPC channels. Together, these findings indicate that TRPC channels can function as STIM1-dependent and STIM1-independent channels, which increases the versatility of TRPC channel function and their role in receptor-stimulated Ca(2+) influx.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992299PMC
http://dx.doi.org/10.1074/jbc.M110.155036DOI Listing

Publication Analysis

Top Keywords

trpc channels
32
mutant trpc
16
ca2+ influx
12
trpc
10
channels
10
stim1-dependent stim1-independent
8
transient receptor
8
receptor potential
8
potential canonical
8
canonical trpc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!