Detection of Borrelia burgdorferi DNA in tick feces provides evidence for organism shedding during vector feeding.

Vector Borne Zoonotic Dis

Microbiology and Pathogenesis Activity, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.

Published: March 2011

Borrelia burgdorferi, the bacterium that causes Lyme disease, is transmitted to a susceptible host by Ixodes spp. tick bites. However, there is uncertainty whether B. burgdorferi are shed from ticks by the fecal route. In this study, B. burgdorferi-infected ticks were fed on mice while confined to a certain area of the skin by a capsule. During and after feeding, tick feces were collected and placed in Barbour-Stoenner-Kelley (BSK)-II media for cultivation and in sterile water for polymerase chain reaction (PCR) analysis. Although none of the tested samples were culture positive for B. burgdorferi, all but one of the fecal DNA samples from infected ticks were PCR positive. These results indicated that B. burgdorferi were shed from feeding ticks during defecation and suggest that the spirochetes did not remain viable once exposed to the outside environment. This finding has important ramifications for investigators interpreting B. burgdorferi-specific PCR results when conducting tick transmission experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1089/vbz.2010.0149DOI Listing

Publication Analysis

Top Keywords

borrelia burgdorferi
8
tick feces
8
burgdorferi
5
detection borrelia
4
burgdorferi dna
4
tick
4
dna tick
4
feces evidence
4
evidence organism
4
organism shedding
4

Similar Publications

With climate and land use changes, tick-borne pathogens are expected to become more widely distributed in Canada. Pathogen spread and transmission in this region is modulated by changes in the abundance and distribution of tick and host populations. Here, we assessed the relationships between pathogens detected in and mammal hosts at sites of different levels of disease risk using data from summer field surveys in Ontario and Quebec, Canada.

View Article and Find Full Text PDF

Unguarded liabilities: complex amino acid dependence exposes unique avenues of inhibition.

Front Antibiot

May 2024

Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States.

Recent reports from the Centers for Disease Control and Prevention approximate 500,000 cases of Lyme disease in the United States yearly, a significant economic burden on the healthcare system. The standard treatment for Lyme disease includes broad-spectrum antibiotics, which may be administered for extensive periods of time and result in significant impacts to the patient. Recently, we demonstrated that , the causative agent of Lyme disease, is uniquely dependent upon peptide acquisition via an oligopeptide transport (Opp) system.

View Article and Find Full Text PDF

Background: The 2018 Infectious Disease Committee of the American Academy of Pediatrics stated that up to 3 weeks or less of doxycycline is safe in children of all ages. Our goal was to examine trends in doxycycline treatment for children with Lyme disease.

Methods: We assembled a prospective cohort of children aged 1 to 21 years with Lyme disease who presented to one of eight participating Pedi Lyme Net centers between 2015 and 2023.

View Article and Find Full Text PDF

Background And Purpose: Clinical manifestations of Lyme borreliosis (LB), caused by Borrelia burgdorferi sensu lato (Bbsl), include erythema migrans, Lyme neuroborreliosis (LNB), carditis, and arthritis. LB is a notifiable disease in Japan with <30 surveillance-reported LB cases annually, predominately from Hokkaido Prefecture. However, LB, including LNB, may be under-diagnosed in Japan since diagnostic tests are not readily available.

View Article and Find Full Text PDF

As per published literature, the tick is the primary Lyme disease vector in British Columbia (BC), while the tick species is the dominant vector on the East Coast of Canada, with no . presence seen in BC. However, a recent publication reported presence of in BC which initiated this study to determine the accuracy of the microscopic identification of ticks received in the BC Centre for Disease Control (BCCDC) Public Health Laboratory and compare morphologic methods to molecular methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!