An electrode-supported system in which ferrocene molecules are embedded in a hybrid bilayer membrane (HBM) has been prepared and characterized. The redox properties of the ferrocene molecules were studied by varying the lipid and alkanethiol building blocks of the HBM. The midpoint potential and electron transfer rate of the embedded ferrocene were found to be dependent on the hydrophobic nature of the electrolyte and the distance at which the ferrocene was positioned in the HBM relative to the electrode and the solution. Additionally, the ability of the lipid-embedded ferrocenium ions to oxidize solution phase ascorbic acid was evaluated and found to be dependent on the nature of the counterion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la1029118 | DOI Listing |
Biochem Biophys Res Commun
December 2024
Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT). Córdoba, Argentina. Electronic address:
Monoterpenes (MTs), the major constituents of plant essential oils, cover a broad spectrum of biological activities through their interaction with biomembranes. MTs are highly hydrophobic substances with a net electrical dipole, but are not clearly amphipathic. As a result, they aggregate at increasing concentrations in aqueous media, and in membrane environments their behavior changes from dynamics modulators to disruptors.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Department of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland.
The design of novel anti-inflammatory drugs remains a critical area of research in the development of effective treatments for inflammatory diseases. In this study, a series of 1,2-benzothiazine was evaluated through a multifaceted approach. In particular, we investigated the potential interactions of the potential drugs with lipid bilayers, an important consideration for membrane permeability and overall pharmacokinetics.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan.
We observed bilayer phase transitions of dimyristoylphosphatidylcholine (DMPC) in aqueous solutions of four kinds of monosaccharides, namely, D-glucose, D-fructose, D-allose and D-psicose, using differential scanning calorimetry (DSC). D-allose (C3-epimer of D-glucose) and D-psicose (C3-epimer of D-fructose) are rare sugars. We performed DSC measurements using two types of sugar-containing sample dispersions of the DMPC vesicles: one is a normal sample dispersion with no concentration asymmetry between the inside and outside of the vesicles and the other is an unusual sample dispersion with a concentration asymmetry.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Institute of Physics, Opole University, Oleska 48, 45-052 Opole, Poland.
This article investigates the influence of dopant molecules on the structural and dynamic properties of lipid bilayers in liposomes, with a focus on the effects of dopant concentration, size, and introduced electric charge. Experimental studies were performed using electron paramagnetic resonance (EPR) spectroscopy with spin probes, complemented by Monte Carlo simulations. Liposomes, formed via lecithin sonication, were doped with compounds of varying concentrations and analyzed using EPR spectroscopy to assess changes in membrane rigidity.
View Article and Find Full Text PDFGels
December 2024
The Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 4070000, Israel.
Buccal drug delivery offers a promising alternative for avoiding gastrointestinal degradation and first-pass metabolism. However, enhancing the buccal epithelial barrier's permeability remains challenging. This study explores the effects of ethanolic extracts from (CM), (CMC), and (ORD) on buccal epithelium permeability in vitro using a TR146 cell-based model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!