Dehydrins are intrinsically unstructured proteins that are expressed in plants experiencing extreme environmental conditions such as drought or low temperature. Although their role is not completely understood, it has been suggested that they stabilize proteins and membrane structures during environmental stress and also sequester metals such as zinc. Here, we investigate two dehydrins (denoted as TsDHN-1 and TsDHN-2) from Thellungiella salsuginea. This plant is a crucifer that thrives in the Canadian sub-Arctic (Yukon Territory) where it grows on saline-rich soils and experiences periods of both extreme cold and drought. We show using circular dichroism and attenuated total reflection-Fourier transform infrared spectroscopy that ordered secondary structure is induced and stabilized in these proteins, both in free and vesicle-bound form, by association with zinc. In membrane-associated form, both proteins have an increased proportion of β-strand conformation induced by the cation, in addition to the amphipathic α-helices formed by their constituent K-segments. These results support the hypothesis that dehydrins stabilize plant plasma and organellar membranes in conditions of stress, and further that zinc may be an important co-factor in stabilization. Whereas dehydrins in the cytosol of a plant cell undergoing dehydration or temperature stress form bulk hydrogels and remain primarily disordered, dehydrins with specific membrane- or protein-associations will have induced ordered secondary structures.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00726-010-0759-0DOI Listing

Publication Analysis

Top Keywords

thellungiella salsuginea
8
tsdhn-1 tsdhn-2
8
ordered secondary
8
dehydrins
6
zinc
4
zinc induces
4
induces disorder-to-order
4
disorder-to-order transitions
4
transitions free
4
free membrane-associated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!