Background: Published studies assessing whether asymmetrical facial ultraviolet light exposure leads to underlying differences in skin physiology and morphology report only clinical observations. The aim of this study was to assess the visual impact on the skin of repeated ultraviolet-A (UVA) exposure through a window.

Methods: Eight women and two men presenting with asymmetrical signs of photoaging due to overexposure of one side of their face to the sun through a window over a long period of time were enrolled in the study. Split-face biometrologic assessments were performed (clinical scoring, hydration with Corneometer, mechanical properties with Cutometer, transepidermal water loss with AquaFlux, skin relief with fringe projection, photography, stripping, and then lipid peroxidation analysis).

Results: Significant differences were observed in clinical scores for wrinkles, skin roughness assessed by fringe projection on the cheek, and skin heterogeneity assessed with spectrocolorimetry on the cheekbone. Other differences were observed for skin hydration, as well as skin laxity, which tended towards significance.

Discussion: This study suggests the potential benefit of daily UVA protection during nondeliberate exposure indoors as well as outside.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946854PMC

Publication Analysis

Top Keywords

asymmetrical facial
8
skin
8
fringe projection
8
differences observed
8
assessment cumulative
4
exposure
4
cumulative exposure
4
exposure uva
4
study
4
uva study
4

Similar Publications

Janus materials, a novel class of materials with two faces of different chemical compositions and electronic polarities, offer significant potential for various applications with catalytic reactions, chemical sensing, and optical or electronic responses. A key aspect for such functionalities is face-dependent electronic bipolarity, which is usually limited by the chemical distinction of terminated surfaces and has not been exploited in the semiconducting regime. Here, it is showed that a Janus and Kagome van der Waals (vdW) material NbTeI has ferroelectric-like coherent stacking of the Janus layers and hosts strong electronic bipolar states in the semiconducting regime.

View Article and Find Full Text PDF

Makeup modifies facial textures and colors, impacting the precision of face anti-spoofing systems. Many individuals opt for light makeup in their daily lives, which generally does not hinder face identity recognition. However, current research in face anti-spoofing often neglects the influence of light makeup on facial feature recognition, notably the absence of publicly accessible datasets featuring light makeup faces.

View Article and Find Full Text PDF

Retinal vessel segmentation is crucial for diagnosing and monitoring ophthalmic and systemic diseases. Optical Coherence Tomography Angiography (OCTA) enables detailed imaging of the retinal microvasculature, but existing methods for OCTA segmentation face significant limitations, such as susceptibility to noise, difficulty in handling class imbalance, and challenges in accurately segmenting complex vascular morphologies. In this study, we propose VDMNet, a novel segmentation network designed to overcome these challenges by integrating several advanced components.

View Article and Find Full Text PDF

Bio-inspired carbon-based artificial muscle with precise and continuous morphing capabilities.

Natl Sci Rev

January 2025

CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

In the face of advancements in microrobotics, intelligent control and precision medicine, artificial muscle actuation systems must meet demands for precise control, high stability, environmental adaptability and high integration miniaturization. Carbon materials, being lightweight, strong and highly conductive and flexible, show great potential for artificial muscles. Inspired by the butterfly's proboscis, we have developed a carbon-based artificial muscle, hydrogen-substituted graphdiyne muscle (HsGDY-M), fabricated efficiently using an emerging hydrogen-substituted graphdiyne (HsGDY) film with an asymmetrical surface structure.

View Article and Find Full Text PDF

This cross-sectional observational study aimed to investigate the relationship between satisfaction with facial appearance among young women, as measured by the FACE-Q tool, and facial asymmetry quantified through stereophotogrammetry. A total of 50 women aged 18 to 30 years with a normal body mass index were recruited for the study. Participants were categorized as either symmetrical or asymmetrical based on facial asymmetry assessments obtained through clinical examination and stereophotogrammetry using the Vectra M3 system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!