Biomass burning is a major source of indoor air pollution in rural India. The authors investigated in this study whether cumulative exposures to biomass smoke cause activation of the serine/threonine kinase Akt in airway cells and peripheral blood lymphocytes (PBL). For this, the authors enrolled 87 premenopausal (median age 34 years), nonsmoking women who used to cook with biomass (wood, dung, crop wastes) and 85 age-matched control women who cooked with cleaner fuel liquefied petroleum gas. Immunocytochemical and immunoblotting assays revealed significantly higher levels of phosphorylated forms of Akt protein (p-Akt(ser473) and p-Akt(thr308)) in PBL, airway epithelial cells, alveolar macrophages, and neutrophils in sputum of biomass-using women than control. Akt activation in biomass users was associated with marked rise in generation of reactive oxygen species and concomitant depletion of superoxide dismutase. Measurement of particulate matter having a diameter of less than 10 and 2.5 µm in indoor air by real-time aerosol monitor showed 2 to 4 times more particulate pollution in biomass-using households, and Akt activation was positively associated with particulate pollution after controlling potential confounders. The findings suggest that chronic exposure to biomass smoke activates Akt, possibly via generation of oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0192623310385139DOI Listing

Publication Analysis

Top Keywords

indoor air
12
air pollution
8
biomass burning
8
activates akt
8
akt airway
8
airway cells
8
cells peripheral
8
peripheral blood
8
blood lymphocytes
8
rural india
8

Similar Publications

Humans have a long-standing relationship with the natural world, particularly in how they engage with plants-referred to as people-plant relationships. While plants naturally live outdoors, people have been including them inside built environments for centuries. Although the benefits of indoor plants are well documented in research, there is limited exploration of individuals' subjective relationships with their indoor plants.

View Article and Find Full Text PDF

Impacts of environmental parameters on sick building syndrome prevalence among residents: a walk-through survey in Rasht, Iran.

Arch Public Health

December 2024

Department of Environmental Sciences, Faculty of Natural Resources, University of Guilan, Someh Sara, Guilan, Iran.

Background: This study evaluated the prevalence of sick building syndrome (SBS) in Rasht, Iran, a subtropical climate with wetter cold season city, during the autumn and winter months of 2020, focusing on the effects of noise and ventilation.

Methods: A total of 420 residents completed the indoor air climate questionnaire (MM040EA), and a walk-through survey of 45 randomly selected residential units assessed environmental noise, ventilation rate, and luminous conditions.

Results: Approximately 38.

View Article and Find Full Text PDF

The effects of filter fabrication approaches on photocatalytic abatement of formaldehyde in an indoor environment using a TiO-based air purifier system.

Environ Res

December 2024

Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea. Electronic address:

Titanium dioxide (TiO) is the most commonly used catalyst for fabricating commercial photocatalytic air purifier (AP) systems. The AP performance can be affected sensitively by the preparation conditions of filters and the physicochemical properties (e.g.

View Article and Find Full Text PDF

Epidemiologic studies of ambient fine particulate matter (PM) and ozone (O) often use outdoor concentrations from central-site monitors or air quality model estimates as exposure surrogates, which can result in exposure errors. We previously developed an exposure model called TracMyAir, which is an iPhone application that determines seven tiers of individual-level exposure metrics for ambient PM and O using outdoor concentrations, home building characteristics, weather, time-activities. The exposure metrics with increasing information needs and complexity include: outdoor concentration (C, Tier 1), building infiltration factor (F, Tier 2), indoor concentration (C, Tier 3), time spent in microenvironments (ME) (T, Tier 4), personal exposure factor (F, Tier 5), exposure (E, Tier 6), and inhaled dose (D, Tier 7).

View Article and Find Full Text PDF

From indoors to outdoors: Impact of waste anesthetic gases on occupationally exposed professionals and related environmental hazards - a narrative review and update.

Environ Toxicol Pharmacol

December 2024

São Paulo State University (UNESP), Medical School, Division of Anesthesiology, GENOTOX Lab., Botucatu, São Paulo, Brazil. Electronic address:

Waste anesthetic gases (WAGs) are trace-concentration inhaled anesthetics that exist worldwide because they are released into the ambient air of operating rooms (ORs) and post-anesthesia care units. WAGs cause indoor contamination, especially in ORs lacking proper scavenging systems, and occupational exposure, while promoting climate change through greenhouse gas/ozone-depleting effects. Despite these controversial features, WAGs continue to pose occupational health hazards.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!