Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multiplicative update algorithms have proved to be a great success in solving optimization problems with nonnegativity constraints, such as the famous nonnegative matrix factorization (NMF) and its many variants. However, despite several years of research on the topic, the understanding of their convergence properties is still to be improved. In this paper, we show that Lyapunov's stability theory provides a very enlightening viewpoint on the problem. We prove the exponential or asymptotic stability of the solutions to general optimization problems with nonnegative constraints, including the particular case of supervised NMF, and finally study the more difficult case of unsupervised NMF. The theoretical results presented in this paper are confirmed by numerical simulations involving both supervised and unsupervised NMF, and the convergence speed of NMF multiplicative updates is investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNN.2010.2076831 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!