Cholesterol and its oxidation products, namely oxysterols, have very recently been shown to potentially interfere with homeostasis of the human digestive tract, by promoting and sustaining irreversible damage of the colonic epithelial layer. This report concerns the strong proinflammatory action that a dietary oxysterol mixture and, to a lesser extent, an identical concentration of unoxidized cholesterol exert on CaCo-2 colonic epithelial cells by up-regulating both expression and synthesis of interleukin 8. The oxysterol mixture and its most effective component, 7β-hydroxycholesterol, are also shown to markedly enhance the expression of key inflammatory and chemotactic cytokines in colonic epithelial cells, more efficiently than unoxidized cholesterol. The sterols' proinflammatory effect seems to be mediated by enhanced activation of NOX1, because it is prevented by pretreatment of the cells with DPI, a selective inhibitor of this oxidase. Importantly, NOX1 hyperactivation by the oxysterol mixture or cholesterol was fully prevented by CaCo-2 cell preincubation with epigallocatechin-3-gallate. Consistently, supplementation with this compound fully protected colonic epithelial cells against overexpression of inflammatory and chemotactic genes induced by the sterols investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.033DOI Listing

Publication Analysis

Top Keywords

colonic epithelial
16
oxysterol mixture
12
epithelial cells
12
cholesterol oxidation
8
oxidation products
8
unoxidized cholesterol
8
inflammatory chemotactic
8
cells
5
proinflammatory cholesterol
4
products caco-2
4

Similar Publications

Human-derived microRNA 21 regulates indole and L-tryptophan biosynthesis transcripts in the gut commensal .

mBio

January 2025

Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.

Unlabelled: In the gut, microRNAs (miRNAs) produced by intestinal epithelial cells are secreted into the lumen and can shape the composition and function of the gut microbiome. Crosstalk between gut microbes and the host plays a key role in irritable bowel syndrome (IBS) and inflammatory bowel diseases, yet little is known about how the miRNA-gut microbiome axis contributes to the pathogenesis of these conditions. Here, we investigate the ability of miR-21, a miRNA that we found decreased in fecal samples from IBS patients, to associate with and regulate gut microbiome function.

View Article and Find Full Text PDF

E. Coli cytotoxic necrotizing factor-1 promotes colorectal carcinogenesis by causing oxidative stress, DNA damage and intestinal permeability alteration.

J Exp Clin Cancer Res

January 2025

Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy.

Background: Bacterial toxins are emerging as promising hallmarks of colorectal cancer (CRC) pathogenesis. In particular, Cytotoxic Necrotizing Factor 1 (CNF1) from E. coli deserves special consideration due to the significantly higher prevalence of this toxin gene in CRC patients with respect to healthy subjects, and to the numerous tumor-promoting effects that have been ascribed to the toxin in vitro.

View Article and Find Full Text PDF

Background And Aims: Protein tyrosine phosphatase non-receptor type 23 (PTPN23) regulates the internalization of growth factor receptors such as the epithelial growth factor receptor (EGFR). Given the crucial function of such receptors in intestinal epithelial cells (IECs), we assessed the involvement of PTPN23 in intestinal homeostasis and epithelial proliferation.

Methods: We generated mouse models with constitutive (PTPN23fl/flVilCre+/-) or inducible (PTPN23fl/flVilCreERT+/-) deletion of PTPN23 in IEC.

View Article and Find Full Text PDF

C9orf72 Alleviates DSS‑Induced Ulcerative Colitis via the cGAS-STING Pathway.

Immun Inflamm Dis

January 2025

Department of Health Care, Qingdao Municipal Hospital, Qingdao, Shandong, China.

Purpose: C9orf72 deficiency contributes to severe inflammation in mice. Ulcerative colitis (UC) is a chronic inflammatory disorder with the shortage of clinical success. However, whether C9orf72 is involved in the progression of UC is not fully understood.

View Article and Find Full Text PDF

Background And Aims: Probe-based confocal endomicroscopy (pCLE) allows real-time microscopic visualization of the intestinal mucosa surface layers. Despite remission achieved through anti-tumor necrosis factor or vedolizumab therapy, anomalies in the intestinal epithelial barrier are observed in inflammatory bowel disease (IBD) patients. Our study aimed to assess these abnormalities in non-IBD individuals and compare them with IBD patients in endoscopic remission to identify the associated factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!