The molecular and cellular mechanisms underlying the pathogenesis of chronic obstructive pulmonary disease (COPD) remain incompletely understood. We have investigated the potential role of macro-autophagy, a cellular homeostatic mechanism, in COPD and cigarette smoke-induced lung-cell injury. Autophagy is a dynamic process for the turnover of organelles and proteins, which regenerates metabolic precursors through the lysosomal-dependent catabolism of cellular macromolecules. It is typically associated with survival pathways, especially in nutrient deficiency states. The role of autophagy in human diseases is less clear, and has been associated with both protective and detrimental consequences, depending on the disease model. While autophagy is considered cytoprotective, this process is often found in association with cell death, and the relationships between autophagy and cell death remain ambiguous. We have found elevated autophagy in COPD lung specimens, as well as in response to cigarette smoke exposure in vitro and in vivo. In our studies, the activation of autophagic proteins was associated with epithelial cell apoptosis in response to cigarette smoke, with pathogenic implications in COPD. Further studies are needed to determine the functional significance of autophagy in COPD and other diseases of the lung.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3081520 | PMC |
http://dx.doi.org/10.1586/ers.10.61 | DOI Listing |
Front Pharmacol
December 2024
China National Tobacco Quality Supervision & Test Center, Zhengzhou, China.
Sci Rep
December 2024
State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, People's Republic of China.
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, characterized by persistent respiratory symptoms and airflow limitations resulting from small airway injury, bronchial wall thickening, and hypersecretion of mucus. Current pharmacological interventions are ineffective in reversing these airflow limitations; In our study, we investigated the potential role of patchouli essential oil (PEO) in the treatment of COPD and its underlying molecular mechanisms, both in vitro and in vivo. To establish a cigarette smoke-induced COPD mice model, we exposed the mice to cigarette smoke (CS) and administered nasal drip of lipopolysaccharides (LPS).
View Article and Find Full Text PDFFront Vet Sci
December 2024
Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: The effects of camel milk in inflammation and systemic oxidative stress of cigarette smoke (CS)-induced chronic obstructive pulmonary disease (COPD) associated with small airway inflammation in rats were investigated.
Methods: 35 male Wistar rats were randomly divided into five groups: (a) control, (b) CS-exposed rats, c and (d) CS-exposed rats treated with the 4 and 8 mL/kg camel milk, and (e) CS-exposed rats treated with 1 mg/kg dexamethasone.
Results: Total and differential WBC counts, serum level of TNF- and malondialdehyde (MDA) level in serum and homogenized tissues of the heart, kidney, liver, and testicle were significantly increased, but catalase (CAT), superoxide dismutase (SOD) and thiol levels were significantly decreased in CS-exposed rats ( < 0.
Immun Inflamm Dis
December 2024
Department of Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China.
Background: Chronic obstructive pulmonary disease (COPD), a prevalent respiratory condition, is characterized by long-term airway inflammation, which can lead to airway remodeling and persistent airflow restriction. Exposure to cigarette smoke is known as a major contributor to COPD development. Research has confirmed that ferroptosis and m6A modification are closely related to various inflammatory-related diseases.
View Article and Find Full Text PDFIntroduction: The incidence of chronic obstructive pulmonary disease (COPD) appears to be increasing and evidence suggests that the intestinal flora may play a causative role in its development. Previous studies found that the Shenqi Wenfei Formula (SQWF) can regulate pyroptosis via the NLRP3/GSDMD pathway, thereby reducing the inflammatory response in the lungs of COPD model rats. However, there is no information on whether the drug's effects are associated with intestinal flora.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!