The impact of storage effects in biobanks on biomarker discovery in systems biology studies.

Biomarkers

Division of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA.

Published: December 2010

Sample handling and storage conditions in specimens frozen over long periods of time can severely impact marker levels. If laboratory technologies, practices and related protocols change over time, biomarker studies are potentially biased and report erroneous results. These issues and pitfalls are often overlooked in system biology studies using previously collected and stored materials, and are likely to be one notable cause for biomarker candidates failing to be validated. We present results from simulation studies quantifying the loss in statistical power to detect true biomarkers, due to diminishing concentration of analytes in samples subject to poor handling and storage conditions.

Download full-text PDF

Source
http://dx.doi.org/10.3109/1354750X.2010.511265DOI Listing

Publication Analysis

Top Keywords

biology studies
8
handling storage
8
storage conditions
8
impact storage
4
storage effects
4
effects biobanks
4
biobanks biomarker
4
biomarker discovery
4
discovery systems
4
systems biology
4

Similar Publications

Cardiovascular safety of 5-fluorouracil and capecitabine in colorectal cancer patients: real-world evidence.

Cardiooncology

January 2025

Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.

Background: Fluoropyrimidines, including 5-fluorouracil and capecitabine, are the most common chemotherapeutic agents for colorectal carcinoma. Although previous studies have suggested varying degrees of cardiotoxicity with these drugs, there is a notable lack of large-scale investigations with appropriate control groups. This study aimed to evaluate cardiovascular outcome among colorectal carcinoma patients treated with fluoropyrimidines.

View Article and Find Full Text PDF

Metabolomic in severe traumatic brain injury: exploring primary, secondary injuries, diagnosis, and severity.

Crit Care

January 2025

Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.

Background: Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI.

View Article and Find Full Text PDF

Background: DNA methylation plays a crucial role in mammalian development. While methylome changes acquired in the parental genomes are believed to be erased by epigenetic reprogramming, accumulating evidence suggests that methylome changes in sperm caused by environmental factors are involved in the disease phenotypes of the offspring. These findings imply that acquired sperm methylome changes are transferred to the embryo after epigenetic reprogramming.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is the most common malignant urological tumor, and regrettably, and is insensitive to chemotherapy and radiotherapy, resulting in poor patient outcomes. DBF4 plays a critical role in DNA replication and participates in various biological functions, making it an attractive target for cancer treatment. However, its significance in ccRCC has not yet been explored.

View Article and Find Full Text PDF

TaSnRK3.23B, a CBL-interacting protein kinase of wheat, confers drought stress tolerance by promoting ROS scavenging in Arabidopsis.

BMC Plant Biol

January 2025

Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China.

Background: Sucrose non-fermenting-1-related protein kinases (SnRKs) have been implicated in plant growth and stress responses. Although SnRK3.23 is known to be involved in drought stress, the underlying mechanism of resistance differs between Arabidopsis and rice, and little is known about its function in wheat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!