Single-molecule microscopy is a powerful tool for investigating various uptake mechanisms of cell-penetrating biomolecules. A particularly interesting class of potential transporter molecules are peptoids. Fluorescence labels for such experiments need to comply with several physical, chemical, and biological requirements. Herein, we report the synthesis and photophysical investigation of new fluorescent pyridinium derived dyes. These fluorescent labels have advantageous structural variations and spacer units in order to avoid undesirable interactions with the labeled molecule and are able to easily functionalize biomolecules. In our case, cell-penetrating peptoids are successfully labeled on solid supports, and in ensemble measurements the photophysical properties of the dyes and the fluorescently labeled peptoids are investigated. Both fluorophores and peptoids are imaged at the single-molecule level in thin polymer gels. With respect to bleaching times and fluorescence lifetimes the dye molecules and the peptoids show only slightly perturbed optical behaviors. These investigations indicate that the new fluorophores fulfill well single-molecule microscopy and solid-phase synthesis requirements.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp103308sDOI Listing

Publication Analysis

Top Keywords

single-molecule level
8
single-molecule microscopy
8
molecules peptoids
8
peptoids
6
novel pyridinium
4
pyridinium dyes
4
dyes enable
4
enable investigations
4
investigations peptoids
4
single-molecule
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!