First-principles thermochemistry for gas phase species in an industrial rutile chlorinator.

J Phys Chem A

Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Cambridge, United Kingdom.

Published: November 2010

This work presents thermochemical data for possible gas phase intermediate species in an industrial rutile chlorinator. An algorithm developed for previous work is employed to ensure that all possible species are considered, reducing the number of important species neglected. Thermochemical data and enthalpies of formation are calculated for 22 new species using density functional theory, post Hartree-Fock coupled cluster calculations, and statistical mechanics. Equilibrium calculations are performed to identify whether any Ti/C intermediates are likely to be important to the high temperature industrial process. These new species are not present at high concentration in the exit stream. It is therefore likely that the two chemical processes do not interact. Rather, the Cl₂ rapidly reacts with the solid TiO₂ to form TiCl₄ and O₂. The latter then reacts with the solid C to form CO and CO₂ and provide the heat. Data for all the new species is provided as Supporting Information. Finally, a new methodology for data collaboration is investigated in which the data is made openly accessible using the resource description framework. Example scripts are provided to demonstrate how to query and retrieve the data automatically.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp106795pDOI Listing

Publication Analysis

Top Keywords

gas phase
8
species industrial
8
industrial rutile
8
rutile chlorinator
8
thermochemical data
8
reacts solid
8
species
7
data
6
first-principles thermochemistry
4
thermochemistry gas
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!