A new family of polyanionic poly(alkyl aryl-ether) metallodendrimers decorated with four and eight cobaltabisdicarbollide units have been obtained in high yield by the ring-opening reaction of cyclic oxonium [3,3'-Co(8-(C(2)H(4)O)(2)-1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))] with alkoxides formed by deprotonation of terminal alcohols in the α,α'-bis[3,5-bis(hydroxymehyl)phenoxy]-p-xylene, α,α'-bis[3,5-bis(hydroxymehyl)phenoxy]-m-xylene, α,α'-bis[3,5-bis-[3,5-bis(hydroxymethyl)phenoxy]methylen]phenoxy]-p-xylene, and α,α,'-bis[3,5-bis-[3,5-bis(hydroxymethyl)phenoxy]methylen]phenoxy]-m-xylene dendrimers. The crystal structure of the precursor α,α'-bis[3,5-bis(chloromethyl)phenoxy]-p-xylene is also described. Final products are fully characterized by FTIR, NMR, UV-vis spectroscopies and elemental analysis. For metallodendrimers, the UV-vis absorptions have been a good tool for estimating the experimental number of cobaltabisdicarbollide units peripherally attached to the dendrimeric structure and consequently to corroborate the complete functionalization of the dendrimers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic101306w | DOI Listing |
Chemistry
December 2021
Laboratoire de Chimie de Coordination (LCC) CNRS, 205 route de Narbonne, 31077, Toulouse cedex 4, France.
This review presents precisely defined amphiphilic dendrons, their self-association properties, and their different uses. Dendrons, also named dendritic wedges, are composed of a core having two different types of functions, of which one type is used for growing or grafting branched arms, generally multiplied by 2 at each layer by using 1→2 branching motifs. A large diversity of structures has been already synthesized.
View Article and Find Full Text PDFJ Org Chem
March 2012
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
Dendritic microenvironments defined by dynamic internal cavities of a dendrimer were probed through geometric isomerization of stilbene and azobenzene. A third-generation poly(alkyl aryl ether) dendrimer with hydrophilic exterior and hydrophobic interior was used as a reaction cavity in aqueous medium. The dynamic inner cavity sizes were varied by utilizing alkyl linkers that connect the branch junctures from ethyl to n-pentyl moiety (C(2)G3-C(5)G3).
View Article and Find Full Text PDFOrg Biomol Chem
September 2011
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P R China.
Amphiphilic water-soluble poly(alkyl aryl ether) dendrimers Gn (n = 1-3) with charge-neutral tetraethylene glycol monomethyl ethers at their periphery were synthesized as microreactors to control the photochemical reactions of dibenzyl ketone derivatives in aqueous solutions. Photophysical studies demonstrated that Gn can encapsulate organic molecules and provide a hydrophobic microenvironment. The product distribution of photolysis of dibenzyl ketone derivatives can be successfully controlled by encapsulating the substrates within dendrimers, and an unsurpassed cage effect of 1.
View Article and Find Full Text PDFJ Org Chem
May 2011
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560118, India.
This report deals with a study of the properties of internal cavities of dendritic macromolecules that are capable of encapsulating and mediating photoreactions of guest molecules. The internal cavity structures of dendrimers are determined by the interfacial regions between the aqueous exterior and hydrocarbon like interior constituted by the linkers that connect symmetrically sited branch points constituting the dendrimer and head groups that cap the dendrimers. Phloroglucinol-based poly(alkyl aryl ether) dendrimers constituted with a homologous series of alkyl linkers were undertaken for the current study.
View Article and Find Full Text PDFInorg Chem
November 2010
Institut de Ciència de Materials de Barcelona, CSIC, Campus U.A.B., 08193 Bellaterra, Spain.
A new family of polyanionic poly(alkyl aryl-ether) metallodendrimers decorated with four and eight cobaltabisdicarbollide units have been obtained in high yield by the ring-opening reaction of cyclic oxonium [3,3'-Co(8-(C(2)H(4)O)(2)-1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))] with alkoxides formed by deprotonation of terminal alcohols in the α,α'-bis[3,5-bis(hydroxymehyl)phenoxy]-p-xylene, α,α'-bis[3,5-bis(hydroxymehyl)phenoxy]-m-xylene, α,α'-bis[3,5-bis-[3,5-bis(hydroxymethyl)phenoxy]methylen]phenoxy]-p-xylene, and α,α,'-bis[3,5-bis-[3,5-bis(hydroxymethyl)phenoxy]methylen]phenoxy]-m-xylene dendrimers. The crystal structure of the precursor α,α'-bis[3,5-bis(chloromethyl)phenoxy]-p-xylene is also described. Final products are fully characterized by FTIR, NMR, UV-vis spectroscopies and elemental analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!