An accurate and precise RP-HPLC method was developed and validated for the determination of carbamazepine and its impurities iminostilbene and iminodibenzyl in a tablet formulation with fluphenazine as an internal standard. Buffer-methanol (50 + 50, v/v) was used as the mobile phase. During validation, specificity, linearity, precision, accuracy, LOD, LOQ, and robustness of the method were tested. The method was proven to be specific against placebo interference. Linearity was evaluated over the concentration range of 100-500, 0.05-0.25, and 0.1-0.5 microg/mL, and the r values were 0.9994, 0.9997, and 0.9979 for carbamazepine, iminostilbene, and iminodibenzyl, respectively. Intraday precision of the method was good, and RSD was below 2% for all analytes. The accuracy of the method ranged from 100.69 to 102.10, 99.76 to 102.66, and 99.26 to 100.08% for carbamazepine, iminostilbene, and iminodibenzyl, respectively. LOD was 0.0125, 0.025, and 0.05 microg/mL and LOQ was 0.05, 0.05, and 0.1 microg/mL for carbamazepine, iminostilbene, and iminodibenzyl, respectiviely. Robustness of the method was proven by using a chemometric approach. The method was successfully applied to the analysis of commercially available carbamazepine tablets and showed good repeatability, with RSD below 2%.
Download full-text PDF |
Source |
---|
Chemistry
September 2021
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan.
Novel electron donor-acceptor-donor (D-A-D) compounds comprising dibenzo[a,j]phenazine as the central acceptor core and two 7-membered diarylamines (iminodibenzyl and iminostilbene) as the donors have been designed and synthesized. Investigation of their physicochemical properties revealed the impact of C insertion into well-known carbazole electron donors on the properties of previously reported twisted dibenzo[a,j]phenazine-core D-A-D triads. Slight structural modification caused a drastic change in conformational preference, allowing unique photophysical behavior of dual emission derived from room-temperature phosphorescence and triplet-triplet annihilation.
View Article and Find Full Text PDFRSC Adv
February 2021
Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University Alshahed Shehata Ahmed Hegazy St. Beni-Suef 62514 Egypt
Structurally related carbamazepine (CBZ) and oxcarbazepine (OX) are two of the most commonly used antipsychotic drugs. The main impurities of CBZ, as described in both the USP and the BP, are iminodibenzyl (IMD) and iminostilbene (IST). Meanwhile, for non-pharmacopeial OX, the declared impurities include CBZ and IST.
View Article and Find Full Text PDFChem Commun (Camb)
December 2018
Department of Polymer Chemistry and Technology, Kaunas University of Technology, Kaunas, Lithuania.
The influence of phenyl linkage and donor strength on the photophysical properties of new derivatives of quinoxaline-containing iminodibenzyl and iminostilbene moieties is studied. The donor-acceptor derivatives showed dual thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) despite a large energy gap between the excited singlet and triplet states (ca. 0.
View Article and Find Full Text PDFChemistry
September 2016
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA), Fax: (+1) 617 253-3297.
Compounds containing the iminodibenzyl and iminostilbene ring systems are prevalent in medicinal targets and functional materials. Herein, we report palladium-catalyzed conditions for the N-arylation of these ring systems. This protocol could be applied to a variety of (hetero)aryl chloride and bromide substrates, including ones, which are sterically hindered or those containing a variety of functional groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!