AI Article Synopsis

  • The study aimed to compare the effectiveness of a combination of type I collagen membrane and xenogenic bone graft with traditional open flap debridement (OFD) for treating periodontal intrabony defects.
  • Twenty paired defects were treated in a split-mouth design, with one side receiving the test treatment and the other side receiving OFD alone, followed by evaluations at nine months post-surgery.
  • Results showed that the test group had significantly greater improvements in probing pocket depth and clinical attachment level compared to the control group, indicating that the combination treatment is more effective.

Article Abstract

Background And Objectives: The primary goal of periodontal therapy is to restore the tooth supporting tissues lost due to periodontal disease. The aim of the present study was to compare the efficacy of combination of type I collagen (GTR membrane) and xenogenic bone graft with open flap debridement (OFD) in treatment of periodontal intrabony defects.

Materials And Methods: Twenty paired intrabony defects were surgically treated using split mouth design. The defects were randomly assigned to treatment with OFD + collagen membrane + bone graft (Test) or OFD alone (Control). The clinical efficacy of two treatment modalities was evaluated at 9 month postoperatively by clinical, radiographical, and intrasurgical (re-entry) parameters. The measurements included probing pocket depth (PD), clinical attachment level (CAL), gingival recession (GR), bone fill (BF), bone density (BD) and intra bony component (INTRA).

Results: The mean reduction in PD at 0-9 month was 3.3±0.82 mm and CAL gain of 3.40±1.51 mm occurred in the collagen membrane + bone graft (Test) group; corresponding values for OFD (Control) were 2.20±0.63 mm and 1.90±0.57 mm. Similar pattern of improvement was observed when radiographical and intra-surgical (re-entry) post operative evaluation was made. All improvement in different parameters was statistically significant (P< 0.01).

Interpretation And Conclusion: Treatment with a combination of collagen membrane and bone graft led to a significantly more favorable clinical outcome in intrabony defects as compared to OFD alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933525PMC
http://dx.doi.org/10.4103/0972-124X.65432DOI Listing

Publication Analysis

Top Keywords

bone graft
20
collagen membrane
16
intrabony defects
12
membrane bone
12
type collagen
8
membrane xenogenic
8
xenogenic bone
8
treatment periodontal
8
periodontal intrabony
8
graft test
8

Similar Publications

Synthetic bone transplantation has emerged in recent years as a highly promising strategy to address the major clinical challenge of bone tissue defects. In this field, bioactive glasses (BGs) have been widely recognized as a viable alternative to traditional bone substitutes due to their unique advantages, including favorable biocompatibility, pronounced bioactivity, excellent biodegradability, and superior osseointegration properties. This article begins with a comprehensive overview of the development and success of BGs in bone tissue engineering, and then focuses on their composite reinforcement systems with biodegradable metals, calcium-phosphorus (Ca-P)-based bioceramics, and biodegradable medical polymers, respectively.

View Article and Find Full Text PDF

Background: Liver fibrosis is caused by chronic toxic or cholestatic liver injury. Fibrosis results from the recruitment of myeloid cells into the injured liver, the release of inflammatory and fibrogenic cytokines, and the activation of myofibroblasts, which secrete extracellular matrix, mostly collagen type I. Hepatic myofibroblasts originate from liver-resident mesenchymal cells, including HSCs and bone marrow-derived CD45+ collagen type I+ expressing fibrocytes.

View Article and Find Full Text PDF

Background: Facial transplantation (FT) provides advanced solutions for severe facial defects by incorporating complex tissues such as bone, skin, oral mucosa and nerves. Oral health plays a critical role in FT, impacting both functional outcomes and transplant prognosis. Despite its importance, literature on oral health in FT recipients remains sparse.

View Article and Find Full Text PDF

Background: Patients with lysine methyltransferase 2a (KMT2A)-rearranged (KMT2A-r) acute myeloid leukemia (AML) are assigned to intermediate-risk and adverse-risk categories at diagnosis. However, the value of molecular measurable residual disease (MRD) status in patients who have KMT2A-r AML before allogeneic hematopoietic stem cell transplantation (allo-HSCT) in adult cohorts has rarely been evaluated.

Methods: Patients with KMT2A-r AML who achieved complete remission and subsequently underwent allo-HSCT between January 2015 and January 2023 were included in this analysis.

View Article and Find Full Text PDF

Research Progress in 3D Printed Biobased and Biodegradable Polyester/Ceramic Composite Materials: Applications and Challenges in Bone Tissue Engineering.

ACS Appl Mater Interfaces

January 2025

Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium.

Transplantation of bone implants is currently recognized as one of the most effective means of treating bone defects. Biobased and biodegradable polyester composites combine the good mechanical and degradable properties of polyester, thereby providing an alternative for bone implant materials. Bone tissue engineering (BTE) accelerates bone defect repair by simulating the bone microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!