NXL104 is a potent inhibitor of class A and C serine β-lactamases, including KPC carbapenemases. Native and NXL104-inhibited TEM-1 and P99 β-lactamases analyzed by liquid chromatography-electrospray ionization-time of flight mass spectrometry revealed that the inactivated enzymes formed a covalent adduct with NXL104. The principal inhibitory characteristics of NXL104 against TEM-1 and P99 β-lactamases were determined, including partition ratios, dissociation constants (K), rate constants for deactivation (k(2)), and reactivation rates. NXL104 is a potent inhibitor of TEM-1 and P99, characterized by high carbamylation efficiencies (k(2)/K of 3.7 × 10(5) M(-1) s(-1) for TEM-1 and 1 × 10(4) M(-1) s(-1) for P99) and slow decarbamylation. Complete loss of β-lactamase activity was obtained at a 1/1 enzyme/NXL104 ratio, with a k(3) value (rate constant for formation of product and free enzyme) close to zero for TEM-1 and P99. Fifty percent inhibitory concentrations (IC(50)s) were evaluated on selected β-lactamases, and NXL104 was shown to be a very potent inhibitor of class A and C β-lactamases. IC(50)s obtained with NXL104 (from 3 nM to 170 nM) were globally comparable on the β-lactamases CTX-M-15 and SHV-4 with those obtained with the comparators (clavulanate, tazobactam, and sulbactam) but were far lower on TEM-1, KPC-2, P99, and AmpC than those of the comparators. In-depth studies on TEM-1 and P99 demonstrated that NXL104 had a comparable or better affinity and inactivation rate than clavulanate and tazobactam and in all cases an improved stability of the covalent enzyme/inhibitor complex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981269 | PMC |
http://dx.doi.org/10.1128/AAC.00568-10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!