Purpose: Preclinical murine model systems used for the assessment of therapeutics have not been predictive of human clinical responses, primarily because their clonotypic nature does not recapitulate the heterogeneous biology and immunosuppressive mechanisms of humans. Relevant model systems with mice that are immunologically competent are needed to evaluate the efficacy of therapeutic agents, especially immunotherapeutics.

Experimental Design: Using the RCAS/Ntv-a system, mice were engineered to coexpress platelet-derived growth factor B (PDGF-B) receptor + B-cell lymphoma 2 (Bcl-2) under the control of the glioneuronal specific Nestin promoter. The degree and type of tumor-mediated immunosuppression were determined in these endogenously arising gliomas on the basis of the presence of macrophages and regulatory T cells. The immunotherapeutic agent WP1066 was tested in vivo to assess therapeutic efficacy and immunomodulation.

Results: Ntv-a mice were injected with RCAS vectors to express PDGF-B + Bcl-2, resulting in both low- and high-grade gliomas. Consistent with observations in human high-grade gliomas, mice with high-grade gliomas also developed a marked intratumoral influx of macrophages that was influenced by tumor signal transducer and activator of transduction 3 (STAT3) expression. The presence of intratumoral F4/80 macrophages was a negative prognosticator for long-term survival. In mice coexpressing PDGF-B + Bcl-2that were treated with WP1066, there was 55.5% increase in median survival time (P < 0.01), with an associated inhibition of intratumoral STAT3 and macrophages.

Conclusions: Although randomization is necessary for including mice in a therapeutic trial, these murine model systems are more suitable for testing therapeutics, especially immunotherapeutics, in the context of translational studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2999668PMC
http://dx.doi.org/10.1158/1078-0432.CCR-10-1693DOI Listing

Publication Analysis

Top Keywords

model systems
12
high-grade gliomas
12
murine model
8
mice
6
intratumoral
4
intratumoral mediated
4
mediated immunosuppression
4
immunosuppression prognostic
4
prognostic genetically
4
genetically engineered
4

Similar Publications

Background: Pressure injuries (PIs) place a substantial burden on healthcare systems worldwide. Risk stratification of those who are at risk of developing PIs allows preventive interventions to be focused on patients who are at the highest risk. The considerable number of risk assessment scales and prediction models available underscores the need for a thorough evaluation of their development, validation, and clinical utility.

View Article and Find Full Text PDF

Trends in Israel's Medical Administration subspecialty, 1987-2022.

Isr J Health Policy Res

January 2025

School of Medicine, Faculty of Medical and Health Sciences and the Coller School of Management, Tel Aviv University, Tel Aviv, Israel.

Background: Israel is unique in offering a formal subspecialty in Medical Administration and mandating it for physicians applying for senior roles. Data on the prevalence and characteristics of these specialists are limited.

Methods: The national registry of licensed physicians was used to identify all living physicians who completed the Medical Administration subspecialty by December 31, 2022.

View Article and Find Full Text PDF

Objectives: This data note presents a comprehensive geodatabase of cardiovascular disease (CVD) hospitalizations in Mashhad, Iran, alongside key environmental factors such as air pollutants, built environment indicators, green spaces, and urban density. Using a spatiotemporal dataset of over 52,000 hospitalized CVD patients collected over five years, the study supports approaches like advanced spatiotemporal modeling, artificial intelligence, and machine learning to predict high-risk CVD areas and guide public health interventions.

Data Description: This dataset includes detailed epidemiologic and geospatial information on CVD hospitalizations in Mashhad, Iran, from January 1, 2016, to December 31, 2020.

View Article and Find Full Text PDF

RNA-Targeting CRISPR/CasRx system relieves disease symptoms in Huntington's disease models.

Mol Neurodegener

January 2025

Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.

Background: HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention.

Methods: The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA.

View Article and Find Full Text PDF

Long-distance transport and associated fasting of unweaned calves have the potential to compromise the animals' welfare. This observational study aimed to determine how transport and fasting durations impacted the physiology and health of 115 transported calves in three transport groups; IRE (n = 20, mean age 29.8d; short road transport (~ 29 h incl.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!