The pattern recognition molecules Nod1 and Nod2 play important roles in intestinal homeostasis; however, how these proteins impact on the development of inflammation during bacterial colitis has not been examined. In the streptomycin-treated mouse model of Salmonella colitis, we found that mice deficient for both Nod1 and Nod2 had attenuated inflammatory pathology, reduced levels of inflammatory cytokines, and increased colonization of the mucosal tissue. Nod1 and Nod2 from both hematopoietic and nonhematopoietic sources contributed to the pathology, and all phenotypes were recapitulated in mice deficient for the signaling adaptor protein Rip2. However, the influence of Rip2 was strictly dependent on infection conditions that favored expression of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system (TTSS), as Rip2 was dispensable for inflammation when mice were infected with bacteria grown under conditions that promoted expression of the SPI-1 TTSS. Thus, Nod1 and Nod2 can modulate inflammation and mediate efficient clearance of bacteria from the mucosal tissue during Salmonella colitis, but their role is dependent on the expression of the SPI-2 TTSS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981303PMC
http://dx.doi.org/10.1128/IAI.00759-10DOI Listing

Publication Analysis

Top Keywords

nod1 nod2
20
salmonella colitis
12
mice deficient
8
mucosal tissue
8
nod1
5
nod2 regulation
4
inflammation
4
regulation inflammation
4
salmonella
4
inflammation salmonella
4

Similar Publications

The MC-LR induced neuroinflammation and the disorders of neurotransmitter system in zebrafish (Danio rerio): Oxidative stress as a key.

Fish Shellfish Immunol

January 2025

College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China. Electronic address:

Microcystin-leucine-arginine (MC-LR) has been shown to induce neuroinflammation and disrupt neurotransmitter system. However, little is known about the mechanism of toxicity. In this study, male adult zebrafish (Danio rerio) were exposed to MC-LR at concentrations of 0, 0.

View Article and Find Full Text PDF

Knockdown of GSDMD inhibits pyroptosis in psoriasis by blocking the NOD-like receptor signaling pathway.

Int Immunopharmacol

January 2025

Department of Dermatology, First Affiliated Hospital of Gannan Medical University, Joint Organization of Jiangxi Clinical Medicine Research Center for Dermatology, Ganzhou 341000, China. Electronic address:

Background: Psoriasis is a chronic inflammatory skin disease regulated by autoimmunity, and pyroptosis plays an important role in this condition. This research sought to examine the function and potential molecular pathway of Gasdermin D (GSDMD) in psoriasis.

Methods: GSDMD expression was examined by immunohistochemistry in biopsied skin tissues from patients with psoriasis.

View Article and Find Full Text PDF

Problem: Aging alters immune function in women and can lead increased risk of infections, particularly in the female reproductive tract (FRT).

Method Of Study: To determine how aging affects innate immune responses in the cervical stroma of the FRT, we isolated endocervical (CX) and ectocervical (ECX) stromal fibroblasts and determine if their expression of multiple pattern recognition receptors (PRRs) and responses to viral stimulation varied with menopause and age.

Results: Constitutive expression of most PRRs did not vary with age or menopausal status in either cell type.

View Article and Find Full Text PDF

Bacterial peptidoglycan, the essential cell surface polymer that protects bacterial integrity, also serves as the molecular pattern recognized by the host's innate immune system. Although the minimal motifs of bacterial peptidoglycan fragments (PGNs) that activate mammalian NOD1 and NOD2 sensors are well-known and often represented by small canonical ligands, the immunostimulatory effects of natural PGNs, which are structurally more complex and potentially can simultaneously activate both the NOD1 and NOD2 signaling pathways in hosts, have not been comprehensively investigated. In particular, many bacteria incorporate additional structural modifications in peptidoglycans to evade host immune surveillance, resulting in diverse structural variations among natural PGNs that may influence their biological effects in hosts.

View Article and Find Full Text PDF

Vi capsular polysaccharide of Salmonella enterica serovar Typhi disturbs autophagy to increase intracellular survival in macrophages.

Microb Pathog

February 2025

Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu, 212001, China. Electronic address:

The autophagy pathway plays a crucial role in resistance to bacterial infection in the host. Salmonella enterica serovar Typhi (S. Typhi), a human restricted pathogen, causes a systemic infection known as typhoid fever.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!