Background: Passive immunization with antibodies directed to Aβ decreases brain Aβ/amyloid burden and preserves memory in transgenic mouse models of Alzheimer's disease (AD). This therapeutic strategy is under intense scrutiny in clinical studies, but its application is limited by neuroinflammatory side effects (autoimmune encephalitis and vasogenic edema).

Methods: We intravenously administered the monoclonal Aβ protofibril antibody PFA1 to aged (22 month) male and female 3 × tg AD mice with intermediate or advanced AD-like neuropathologies, respectively, and measured brain and serum Aβ and CNS cytokine levels. We also examined 17 month old 3 × tg AD female mice with intermediate pathology to determine the effect of amyloid burden on responses to passive immunization.

Results: The 22 month old male mice immunized with PFA1 had decreased brain Aβ, increased serum Aβ, and no change in CNS cytokine levels. In contrast, 22 month old immunized female mice revealed no change in brain Aβ, decreased serum Aβ, and increased CNS cytokine levels. Identical experiments in younger (17 month old) female 3 × tg AD mice with intermediate AD-like neuropathologies revealed a trend towards decreased brain Aβ and increased serum Aβ accompanied by a decrease in CNS MCP-1.

Conclusions: These data suggest that passive immunization with PFA1 in 3 × tg AD mice with intermediate disease burden, regardless of sex, is effective in mediating potentially therapeutic effects such as lowering brain Aβ. In contrast, passive immunization of mice with a more advanced amyloid burden may result in potentially adverse effects (encephalitis and vasogenic edema) mediated by certain proinflammatory cytokines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955708PMC
http://dx.doi.org/10.1186/1742-2094-7-57DOI Listing

Publication Analysis

Top Keywords

passive immunization
16
female mice
16
mice intermediate
16
serum aβ
16
brain aβ
16
cns cytokine
12
cytokine levels
12
aβ increased
12
10
aβ/amyloid burden
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!