A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Postconditioning attenuates myocardial injury by reducing nitro-oxidative stress in vivo in rats and in humans. | LitMetric

AI Article Synopsis

  • The study investigates how postconditioning (postcon) protects the heart from damage after an acute myocardial infarction (AMI) by lowering levels of peroxynitrite (ONOO-) and reducing oxidative stress caused by inducible nitric oxide synthase (iNOS).
  • In clinical trials on AMI patients, postcon was shown to decrease iNOS activity and plasma nitrotyrosine levels, leading to improved heart function compared to control subjects.
  • Animal experiments confirmed these findings, showing that postcon lowered both iNOS activity and myocardial infarct size, while using an iNOS inhibitor mimicked postcon's effects, and an ONOO- donor negated its benefits, indicating that the cardioprotective mechanism involves

Article Abstract

In the present study, we hypothesized that postcon (postconditioning) confers cardioprotection in vivo by reducing the production of ONOO- (peroxynitrite) and nitro-oxidative stress subsequent to the inhibition of the iNOS (inducible NO synthase). Patients with AMI (acute myocardial infarct) were randomly assigned to undergo percutaneous coronary intervention without (control) or with ischaemic postcon by three episodes of 30-s inflation and 30-s deflation of the angioplasty balloon. Animal models of MI/R (myocardial ischaemia/reperfusion) injury were induced in rats by occluding the left coronary artery for 40 min followed by 4-h reperfusion. Rats were randomized to receive vehicle, postcon (three cycles of 10-s reperfusion and 10-s coronary re-occlusion preceding full reperfusion), the selective iNOS inhibitor 1400W or postcon plus 3-morpholinosydnonimine (an ONOO- donor). Postcon in patients reduced iNOS activity in white blood cells, decreased plasma nitrotyrosine, a fingerprint of ONOO- and an index of nitro-oxidative stress, and improved cardiac function (P<0.01 compared with control). In rats, postcon reduced post-ischaemic myocardial iNOS activity and nitrotyrosine formation, reduced myocardial infarct size (all P<0.05 compared with control) and improved cardiac function. Administration of 1400W resembled, whereas 3-morpholinosydnonimine abolished, the effects of postcon. In conclusion, reduction in ONOO--induced nitro-oxidative stress subsequent to the inhibition of iNOS represents a major mechanism whereby postcon confers cardioprotection in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1042/CS20100369DOI Listing

Publication Analysis

Top Keywords

nitro-oxidative stress
12
postcon three
8
postcon
5
postconditioning attenuates
4
attenuates myocardial
4
myocardial injury
4
injury reducing
4
reducing nitro-oxidative
4
stress vivo
4
vivo rats
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!