Alternative functions of the BCL-2 protein family at the endoplasmic reticulum.

Adv Exp Med Biol

The FONDAP Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, Faculty of Medicine, and Millennium Nucleus for Neural Morphogenesis, University of Chile, Santiago, Chile.

Published: October 2010

Apoptosis is essential for maintenance of tissue homeostasis and its deregulation results in a variety of disease conditions. The BCL-2 family of proteins is a group of evolutionarily conserved regulators of cell death that comprises both anti- and pro-apoptotic members, that operate at the mitochondrial membrane to control caspase activation. Different BCL-2-related proteins are also located in the endoplasmic reticulum (ER), where important roles in organelle physiology are proposed. Adaptation to ER stress is mediated by the activation of a complex signal transduction pathway known as the unfolded protein response (UPR). Recent reports indicate that the ER stress sensor IRE1alpha, signals through the formation of a protein complex platform at the ER membrane, here termed the "UPRosome". Alternatively, BCL-2 family members are contained in other multiprotein complexes at the ER that are involved in the control of diverse cellular processes including calcium homeostasis, autophagy and ER morphogenesis. Here we describe the emerging concept that BCL-2 family members are important regulators of essential cellular processes beyond apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4419-6706-0_2DOI Listing

Publication Analysis

Top Keywords

bcl-2 family
12
endoplasmic reticulum
8
family members
8
cellular processes
8
alternative functions
4
bcl-2
4
functions bcl-2
4
bcl-2 protein
4
family
4
protein family
4

Similar Publications

Progress in the Study of TAp73 and Sperm Apoptosis.

Cell Biochem Funct

January 2025

Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China.

The study of the mechanism of oligoasthenospermia, which is a major cause of male infertility, has been the focus of research in the field of male reproduction. TAp73, a member of the p53 family of oncogenes, is endowed with tumor-suppressing activity due to its structural and functional homology with p53. It has been found that TAp73, plays a key role in spermatogenesis and maintaining male reproduction.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is the most aggressive brain tumor malignancy in adults, accounting for nearly 50% of all gliomas. Current medications for GBM frequently lead to drug resistance.

Objectives: Umbelliferone (UMB) is found extensively in many plants and shows numerous pharmacological actions against inflammation, degenerative diseases and cancers.

View Article and Find Full Text PDF

Background: N6-methyladenosine (m6A) is one of the most conserved internal RNA modifications, which has been implicated in many biological processes, such as apoptosis and proliferation. Wilms tumor 1-associating protein (WTAP), as a key component of m6A methylation, is a nuclear protein that has been associated with the regulation of proliferation and apoptosis. Rheumatoid arthritis (RA), a systemic, infiltrating autoimmune disease, is characterized by synovial hyperplasia.

View Article and Find Full Text PDF

ECM stiffness regulates lung fibroblast survival through RasGRF1 dependent signaling.

J Biol Chem

January 2025

Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA. Electronic address:

Extracellular matrix stiffness is one of the multiple mechanical signals that alters cellular behavior. During studies exploring the effect of matrix rigidity on lung fibroblast survival we discovered that enhanced survival on stiff substrates is dependent on elevated Ras activity, owing to the activation of the GEF, RasGRF1. Mechanistically, we found that the increased Ras activity lead to the activation of both the AKT and ERK pathways.

View Article and Find Full Text PDF

One BAG doesn't fit all: the differences and similarities of BAG family members in mediating CNS homeostasis.

Biol Psychiatry

January 2025

Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA. Electronic address:

There is an increasing awareness that B-cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) proteins play critical roles in maintaining neural homeostasis, and that their dysregulation contributes to neurological disorders. This protein family of nine members is evolutionarily conserved, with each member having at least one BAG domain that binds to the nucleotide-binding domains of Heat Shock Protein (Hsp) 70 family members. Collectively, these proteins are essential for the proper functioning of the central nervous system (CNS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!