[Continuous measuring of heat production during the course of the day in fully grown rats at different nutrition levels and different environmental temperatures].

Arch Tierernahr

Forschungszentrum für Tierproduktion Dummerstorf-Rostock der Akademie der Landwirtschaftswissenschaften der DDR Bereich Tierernährung Oskar Kellner.

Published: September 1990

The heat production of 4 rats was measured by means of indirect calorimetry over 20 h/d at intervals of 4 min at ambient temperatures of 30, 25, 20 and 15 degrees C and feed intakes of 0, 4, 8 and 12 g/d. When the rats were hungry, their heat production was reduced by between 8 and 44 kJ/kg LW0.75.d. Feed intake increased heat production by between 54 and 102%. In the temperature range between 20 and 30 degrees C the rats required 0.36 kJ or 2.4% resp. of the metabolizable energy for the intake of 1 g feed. At 15 degrees C the corresponding values were 0.48 kJ or 3.2% resp. The activity-conditioned quota of heat production was estimated as 31 +/- 10%. In the temperature range of between 30 and 25 degrees C thermoregulatory heat production amounted to 5 and that in the temperature range between 25 and 15 degrees C to 20 kJ/kg LW0.75.d.K. No compensation of thermoregulatory heat by heat from increase of energy intake could be proved in the temperature range between 15 and 30 degrees C.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17450399009428425DOI Listing

Publication Analysis

Top Keywords

heat production
24
temperature range
16
range degrees
16
heat
8
energy intake
8
thermoregulatory heat
8
production
6
degrees
6
[continuous measuring
4
measuring heat
4

Similar Publications

Heat acclimation defense against exertional heat stroke by improving the function of preoptic TRPV1 neurons.

Theranostics

January 2025

Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.

Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS.

View Article and Find Full Text PDF

Nuclear power plant waste heat opens a window of next-generation desalination hybridization: a SOAR-based review.

Water Sci Technol

January 2025

Department of Production Engineering and Mechanical Design, Faculty of Engineering, Tanta University 31527, Egypt; Faculty of Engineering, Pharos University in Alexandria 21648, Alexandria, Egypt.

This review examines the potential for utilizing nuclear power plant (NPP) waste heat in hybrid desalination systems, focusing on Reverse Osmosis-Low-Temperature Evaporation (RO-LTE) driven by renewable energy sources and atomic waste heat. By employing a SOAR (Strengths, Opportunities, Aspirations, Results) analysis, the study evaluates the integration of NPP waste heat into various desalination technologies, emphasizing the environmental benefits and energy efficiency improvements. Fundamental aspirations include advancements in material science and heat exchanger designs, which enhance heat transfer and evaporation processes.

View Article and Find Full Text PDF

Today, composite profiles of constant cross section are widely used in advanced engineering structures. The use of composite profiles in window and door structures can reduce thermal bridging and reduce energy consumption for heating and cooling. This article focuses on the production of new, thermoplastic-based structural pultruded profiles and their application in a PVC (polyvinylchloride) window structure as a reinforcement.

View Article and Find Full Text PDF

Integration of ordered porous materials for targeted three-component gas separation.

Nat Commun

January 2025

Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.

Separation of multi-component mixtures in an energy-efficient manner has important practical impact in chemical industry but is highly challenging. Especially, targeted simultaneous removal of multiple impurities to purify the desired product in one-step separation process is an extremely difficult task. We introduced a pore integration strategy of modularizing ordered pore structures with specific functions for on-demand assembly to deal with complex multi-component separation systems, which are unattainable by each individual pore.

View Article and Find Full Text PDF

Climate change has caused heat stress (HS) to become an increasingly severe problem for high-producing dairy herds. Although cooling systems allow milk production to remain nearly constant throughout the year, fertility decreases during summer. Physiological counter-current heat transfer mechanisms maintaining brain/hypothalamic and reproductive functions in cattle are vulnerable to HS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!