The changes in the derma, selected as a representative of highly organized connective tissue, were studied by 8 types of staining and histochemical reactions in 896 biopsies of macroscopically unchanged skin from the gluteal region of 56 patients with acute phospho-organic pesticide intoxication between the 2d and 15th day after the intoxication. 272 biopsies from 17 healthy persons and the literature data, describing the normal structure of the skin, served as controls. Nonspecific changes affecting mainly the elastic and collagen components, in some cases parallel to the severity of the intoxication, were found. The reticular net, vessels, matrix and cell elements were far less affected which shows their comparative resistance to the pesticide action.

Download full-text PDF

Source

Publication Analysis

Top Keywords

connective tissue
8
patients acute
8
[the connective
4
tissue changes
4
changes patients
4
acute poisonings
4
poisonings organophosphate
4
organophosphate pesticides]
4
pesticides] changes
4
changes derma
4

Similar Publications

Objectives: The 2022 European Society of Cardiology and European Respiratory Society (ESC/ERS) Guidelines for pulmonary arterial hypertension (PAH) recommend risk stratification to optimize management. However, the performance of generic PAH risk stratification tools in patients with systemic sclerosis (SSc)-associated PAH remains unclear. Our objective was to identify the most accurate approach for risk stratification at SSc-PAH diagnosis.

View Article and Find Full Text PDF

The maintenance of an appropriate ratio of body fat to muscle mass is essential for the preservation of health and performance, as excessive body fat is associated with an increased risk of various diseases. Accurate body composition assessment requires precise segmentation of structures. In this study we developed a novel automatic machine learning approach for volumetric segmentation and quantitative assessment of MRI volumes and investigated the efficacy of using a machine learning algorithm to assess muscle, subcutaneous adipose tissue (SAT), and bone volume of the thigh before and after a strength training.

View Article and Find Full Text PDF

This study aimed to investigate the correlation of the increased volume index of epicardial adipose tissue (EAT) and left ventricular hypertrophy (LVH) in patients with Hypertension (HTN). A total of 209 HTN patients and 50 healthy controls, who underwent cardiovascular magnetic resonance (CMR) at two medical centers in China between June 2015 and October 2024, were enrolled for this study. Postprocessing and imaging analysis were conducted and EAT measurements were performed.

View Article and Find Full Text PDF

WBSCR16 is essential for mitochondrial 16S rRNA processing in mammals.

Nucleic Acids Res

January 2025

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China.

Mitochondrial rRNAs play important roles in regulating mtDNA-encoded gene expression and energy metabolism subsequently. However, the proteins that regulate mitochondrial 16S rRNA processing remain poorly understood. Herein, we generated adipose-specific Wbscr16-/-mice and cells, both of which exhibited dramatic mitochondrial changes.

View Article and Find Full Text PDF

An 18-year-old female patient presented with a 1-month history of low back pain, which had worsened and was accompanied by radiating pain in the right lower limb for half a month. She was admitted to our hospital with computed tomography and magnetic resonance imaging findings suggesting calcification of the L3/4 disc and a large intraspinal mass at the L2-4 level. The patient's symptoms did not improve with conservative treatment, and her muscle strength rapidly declined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!