Hemopoietic cells have an absolute requirement for survival and proliferation for specific growth factors. The growth factors maintain the critical vitality of the cells by stimulating adenosine triphosphate (ATP) synthesis and hexose transport. Intracellular alkalinization also occurs rapidly through the stimulation of the Na+/H+ antiporter. These immediate metabolic events, not initiated by serum components, appear to be necessary for the integrity of cellular viability (Fig. 6). Interleukin-3 has been shown to induce the activation of PK-C through a mechanism(s) not requiring the hydrolysis of phosphoinositol 4,5 bisphosphate. A role for Ca2+ influx or intracellular release in the action of CSFs or interleukins has not been shown. Although downregulation of cAMP has been reported in response to IL-2, the signal transduction process of CSFs and IL-2 appears not to be mediated by upregulation of cyclic nucleotide metabolism or "classical" phospholipid degradative pathways. Protein phosphorylation is clearly modulated by the hemopoietic cytokines, yet only the CSF-1 receptor has any known intrinsic kinase activity. Instead, the IL-3, GM-CSF receptors, and perhaps G-CSF appear to be coupling to kinases of both tyrosine and serine specificities. This may be a direct allosteric interaction with membrane-associated kinases or transduced through an intermediate protein such as those using GTP. Such is the case for many hormone receptors that couple to amplifying "second messenger" enzyme systems (i.e., adenylate cyclase, phospholipase C) or members of the insulin growth factor family that couple to tyrosine kinases in proximity to the receptors (IGF-II). One of the kinase systems that IL-2, IL-3, and other CSFs stimulate appears to have some characteristics similar to PK-C. Direct activators of PK-C stimulate some similar serine-threonine phosphorylation and perhaps even tyrosine phosphorylation. The hemopoietic growth factors, however, stimulate tyrosine phosphorylation of some proteins that are not phosphorylated in response to PK-C activators, suggesting that these kinase systems are independently regulated. Although phorbol esters stimulate many of the same metabolic activities (ATP synthesis in myeloid and lymphoid cell lines), growth-factor abrogation is clearly associated with the action of tyrosine kinase oncogenes or the nuclear oncogene effectors such as v-myc. It is likely, therefore, that tyrosine kinases are playing a critical role in the control of proliferation although the dominant amount of cellular protein phosphorylations are on serine. Both classes of kinases are apparently required for growth-factor action. All the hemopoietic growth factors examined thus far stimulate the steady-state accumulation of the nuclear protooncogenes.(ABSTRACT TRUNCATED AT 400 WORDS)
Download full-text PDF |
Source |
---|
Sci Rep
December 2024
Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1690, USA.
Electronic cigarettes (e-cigs) fundamentally differ from tobacco cigarettes in their generation of liquid-based aerosols. Investigating how e-cig aerosols behave when inhaled into the dynamic environment of the lung is important for understanding vaping-related exposure and toxicity. A ventilated artificial lung model was developed to replicate the ventilatory and environmental features of the human lung and study their impact on the characteristics of inhaled e-cig aerosols from simulated vaping scenarios.
View Article and Find Full Text PDFSci Rep
December 2024
Institute for Forest Resources and Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China.
This study aims to explore the low phosphorus (P) tolerance of saplings from different Gleditsia sinensis Lam. families. It also seeks to screen for Gleditsia sinensis families with strong low P tolerance and identify key indicators for evaluating their tolerance.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
December 2024
Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, 2200, Denmark.
The evolution of antimicrobial resistance (AMR) in biofilms, driven by mechanisms like oxidative stress, is a major challenge. This study investigates whether antioxidants (AOs) such as N-acetyl-cysteine (NAC) and Edaravone (ED) can reduce AMR in Pseudomonas aeruginosa biofilms exposed to sub-inhibitory concentrations of ciprofloxacin (CIP). In vitro experimental evolution studies were conducted using flow cells and glass beads biofilm models.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
Although CCL17 has been reported to exert a vital role in many cancers, the related studies in the thyroid carcinoma have never reported. As a chemokine, CCL17 plays a positive role by promoting the infiltration of immune cells into the tumor microenviroment (TME) to influence tumor invasion and metastasis. Therefore, this study is aimed to investigate the association of CCL17 level with potential prognostic value on tumor immunity in the thyroid carcinoma (THCA) based on the bioinformatics analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!