Differential expressions and DNA methylation patterns of lysophosphatidic acid receptor genes in human colon cancer cells.

Virchows Arch

Laboratory of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan.

Published: December 2010

Lysophosphatidic acid (LPA), which is a bioactive phospholipid, interacts with specific G protein-coupled transmembrane receptors. Recently, alterations of LPA receptor genes have been reported in some tumor cells. In this study, we examined the expression profiles and DNA methylation status of LPA receptor 1-5 (LPA1-5) genes in human colon cancer cells and also looked for the mutations. Reverse transcription-polymerase chain reaction (PCR) and bisulfite sequencing analyses were carried out. While LPA1, LPA2, and LPA4 genes were expressed in DLD1, SW480, HCT116, CaCo-2, SW48, and LoVo cells, the expressions of LPA3 and LPA5 genes were various. These expression levels were correlated with DNA methylation status in the 5' upstream regions of the LPA receptor genes. Mutation analysis was also performed using a PCR-single-strand conformation polymorphism method. Although no mutations in LPA1, LPA3 and LPA5 genes were found in all types of cells, LPA2 mutations in DLD1 and SW48 cells, and LPA4 mutation were found in DLD1 cells. On the basis of the present results, we demonstrate that these colon cancer cells will be available to understanding the molecular pathway through LPA receptors in the development of tumor cells, and that LPA receptors may be new molecular targets for therapeutic approaches and chemoprevention.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00428-010-0960-2DOI Listing

Publication Analysis

Top Keywords

dna methylation
12
receptor genes
12
colon cancer
12
cancer cells
12
lpa receptor
12
cells
9
lysophosphatidic acid
8
genes human
8
human colon
8
tumor cells
8

Similar Publications

Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.

View Article and Find Full Text PDF

Childhood maltreatment exposure (CME) increases the risk of adverse long-term health consequences for the exposed individual. Animal studies suggest that CME may also influence the health and behaviour in the next generation offspring through CME-driven epigenetic changes in the germ line. Here we investigated the associated between early life stress on the epigenome of sperm in humans with history of CME.

View Article and Find Full Text PDF

Multiomic characterization, immunological and prognostic potential of SMAD3 in pan-cancer and validation in LIHC.

Sci Rep

January 2025

Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.

SMAD3, a protein-coding gene, assumes a pivotal role within the transforming growth factor-beta (TGF-β) signaling pathway. Notably, aberrant SMAD3 expression has been linked to various malignancies. Nevertheless, an extensive examination of the comprehensive pan-cancer impact on SMAD3's diagnostic, prognostic, and immunological predictive utility has yet to be undertaken.

View Article and Find Full Text PDF

We have developed the regionalpcs method, an approach for summarizing gene-level methylation. regionalpcs addresses the challenge of deciphering complex epigenetic mechanisms in diseases like Alzheimer's disease. In contrast to averaging, regionalpcs uses principal components analysis to capture complex methylation patterns across gene regions.

View Article and Find Full Text PDF

Epigenetics in autosomal dominant polycystic kidney disease.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA. Electronic address:

Autosomal dominant polycystic kidney disease (ADPKD) is the fourth leading cause of end-stage renal disease, contributing substantially to patient morbidity, mortality, and healthcare system strain. Emerging research highlights a pivotal role of epigenetics in ADPKD's pathophysiology, where mechanisms like DNA methylation, histone modifications, and non-coding RNA regulation significantly impact disease onset and progression. These epigenetic factors influence gene expression and regulate key processes involved in cyst formation and expansion, fibrosis, and inflammatory infiltration, thus accelerating ADPKD progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!