Electrical discharges in humid air at atmospheric pressure (nonthermal quenched plasma) generate long-lived chemical species in water that are efficient for microbial decontamination. The major role of nitrites was evidenced together with a synergistic effect of nitrates and H(2)O(2) and matching acidification. Other possible active compounds are considered, e.g., peroxynitrous acid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2976197PMC
http://dx.doi.org/10.1128/AEM.01615-10DOI Listing

Publication Analysis

Top Keywords

chemical species
8
combined effects
4
effects long-living
4
long-living chemical
4
species microbial
4
microbial inactivation
4
inactivation atmospheric
4
atmospheric plasma-treated
4
plasma-treated water
4
water electrical
4

Similar Publications

Background: Colorectal cancer (CRC) is a major public health concern. Animal models play a crucial role in understanding the disease pathology and development of effective treatment strategies. Chemically induced CRC represents a cornerstone in animal model development; however, due to the presence of different animal species with different genetic backgrounds, it becomes mandatory to study the susceptibility of different mice species to CRC induction by different chemical entities such as 1,2-dimethylhydrazine (DMH).

View Article and Find Full Text PDF

Dredging in estuarine systems significantly impacts phytoplankton communities, with suspended particulate matter (SPM) and dissolved aluminum (Al) serving as indicators of disturbance intensity. This study assessed the effects of dredging in the São Marcos Estuarine Complex (SMEC), Brazil, over three distinct events (2015, 2017, 2020), involving varying sediment volumes and climatic influences. Prolonged dredging operations and increased sediment volumes led to a pronounced 43.

View Article and Find Full Text PDF

Sources of PM exposure and health benefits of clean air actions in Shanghai.

Environ Int

January 2025

Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Joint International Research Laboratory of Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.

Estimating PM exposure and its health impacts in cities involves large uncertainty due to the limitations of model resolutions. Consequently, attributing the sources of PM-related health impacts at the city level remains challenging. We characterize the health impacts associated with chronic PM exposure and anthropogenic emissions in Shanghai using a chemical transport model (GEOS-Chem) and its adjoint.

View Article and Find Full Text PDF

Chemical speciation and availability of molybdenum in soils to wheat uptake.

J Environ Manage

January 2025

Department of Agricultural Chemistry, National Taiwan University, Taipei, 106319, Taiwan. Electronic address:

Molybdenum (Mo) is an essential micronutrient for plants, yet it also poses potential environmental risks when present in excess. This study investigated the Mo speciation in soils with varying properties and their influences on Mo uptake by wheat (Triticum aestivum L.), a staple crop with significant implications for global food security.

View Article and Find Full Text PDF

Triphenylphosphine-modified cyclometalated iridium complexes as mitochondria-targeting anticancer agents with enhanced selectivity.

Bioorg Chem

January 2025

Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China. Electronic address:

This study presents the development and evaluation of triphenylphosphine-modified cyclometalated iridium complexes as selective anticancer agents targeting mitochondria. By leveraging the mitochondrial localization capability of the triphenylphosphine group, these complexes displayed promising cytotoxicity in the micromolar range (3.12-7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!