A novel Schiff base ligand 5-(phenylazo)-N-(2-amino pyridine) salicyliden is prepared through the condensation of 5-(phenylazo) salicylaldehyde and 2-amino pyridine in methanol at room temperature. The orange crystalline precipitate is used for X-ray crystallography and measuring Fourier transform (FTIR), 1H NMR and 13C NMR spectra. Density functional theory (DFT) calculations at the B3LYP, MPWB1K and B3PW91 levels of theory is used to optimize the geometry and calculate the FTIR, 1H NMR and 13C NMR spectra of the compound. The vibrational frequencies determined experimentally are compared with those obtained theoretically and a vibrational assignment and analysis of the fundamental modes of the compound is performed. We found that the MPWB1K method predicts low vibrational frequencies better than the commonly used B3LYP method. Although the B3PW91 method overestimates the 1H NMR chemical shifts, the values computed at the B3LYP level of theory are in accordance with experimental 1H NMR spectrum. However, both B3LYP and B3PW91 methods tend to overestimate 13C NMR chemical shifts. In addition, a few quantum descriptors of the molecule are calculated and conformational analysis is performed and the result was compared with crystallographic data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2010.08.075 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!