Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The modification of pristine Bentonite clay with sulphate and phosphate anions was found to increase its cation-exchange capacity (CEC), adsorption capacity and overall pseudo-second order kinetic rate constant for the adsorption of Cu(2+) and Zn(2+). Modification with sulphate and phosphate anion decreased the specific surface area of pristine Bentonite clay. Phosphate-modified Bentonite clay was found to give the highest adsorption capacity for both metal ions. The adsorption process was observed to be endothermic and spontaneous in nature for both metal ions with Zn(2+) being more adsorbed. Modification with phosphate anion increased the spontaneity of the adsorption process. The effective modification of pristine Bentonite clay with sulphate anion was confirmed from hypochromic shifts in the range of 13-18 cm(-1) which is typical of physisorption while modification with phosphate anion was confirmed by its hyperchromic shifts typical of chemisorption in the infrared red region using Fourier transformed infrared spectroscopy (FTIR). Using the model efficiency indicator, kinetic data were found to show very strong fit to the pseudo-second order kinetic model implying that the adsorption of Cu(2+) and Zn(2+) were basically by chemisorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2010.08.100 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!