Sorption of toluene and xylene by tire crumb rubber (TCR) and its main components: carbon black (CB) and styrene-butadiene polymer (SBP) were evaluated. The 12 starting concentrations of adsorbates in aqueous solutions ranged from 0.05 mg/L to 100.0mg/L. The amounts of CB and SBP used in the sorption tests were determined considering their typical contents in tire crumb rubber (30% and 60% w/w, respectively). Freundlich's isotherms and Scatchard plot parameters suggested a two-step sorption process when TCR was used as the sorbent; whereas a single-step route was apparent when the sorption experiments were carried out with CB or SBP. Freundlich's n parameter was estimated at 0.65 for CB and 1.0 for both TCR and SBP. A removal of 60% of toluene and 81% of xylene from starting 50 ppm solutions was attained in the first 30 minutes of contact using 5 g/L of TCR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2010.09.003DOI Listing

Publication Analysis

Top Keywords

crumb rubber
12
toluene xylene
8
aqueous solutions
8
tire crumb
8
sorption
5
sorption study
4
study toluene
4
xylene aqueous
4
solutions recycled
4
recycled tires
4

Similar Publications

Asphalt modified with treated waste tires has good environmental protection and application value. However, the nano-modification mechanism of crumb rubber (CR) with asphalt is still unclear. This research investigates the mechanism, aging, and interfacial interaction with the aggregate of CR modification asphalt (CRMA).

View Article and Find Full Text PDF

The growing use of artificial turf in place of natural turf in residential, recreational and commercial settings has raised concerns regarding its potential impact on human health. A systematic review of databases revealed 5673 articles of which, 30 were deemed eligible. Those performing total concentration analyses, bioaccessibility analyses or human health risk assessments (HHRAs) of artificial turf fibres or crumb rubber infill were of interest.

View Article and Find Full Text PDF

The significant growth in road infrastructure worldwide over the last decade has resulted in a notable increase in the demand for asphalt binder. However, the utilization of asphalt binder in the road industry poses challenges to environmental sustainability and economic standpoints. The application of vehicular loads and exposure to environmental factors throughout the service life of roads contribute to the deterioration of binder properties, such as hardening and aging, ultimately leading to premature road failure.

View Article and Find Full Text PDF

Performance of Crumb Rubber Tire-Modified Bitumen for Malaysian Climate Regions.

Materials (Basel)

November 2024

Institute of Transportation, Faculty of Civil and Environmental Engineering, TU Wien, Karlsplatz 13/E230, 1040 Vienna, Austria.

Researchers are increasingly concerned about the vast amounts of waste rubber tires produced globally, which contribute significantly to environmental pollution. The potential of incorporating waste rubber tires to modify bitumen has garnered considerable interest. This study assesses pavement design temperatures according to SUPERPAVE standards for representative Malaysian regions.

View Article and Find Full Text PDF
Article Synopsis
  • This study tests composite modification techniques to enhance the performance of recycled asphalt, using high-viscosity agents (HVA) and crumb rubber materials (CRM) combined with styrene-butadiene-styrene (SBS) to create modified asphalt samples.
  • The performance of four types of asphalt mixtures, including virgin and three recycled mixtures with 50% reclaimed asphalt content, was analyzed through various tests, revealing that higher kinematic viscosity leads to increased optimum asphalt content and enhanced adhesion in dry conditions.
  • Results indicate that while SBS-CRM significantly boosts moisture sensitivity and low-temperature cracking resistance compared to other modified asphalts, the choice of modification method should align with climate and loading conditions for optimal performance and sustainability.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!