The periplasmic binding protein HmuT from Yersinia pestis (YpHmuT) is a component of the heme uptake locus hmu and delivers bound hemin to the inner-membrane-localized, ATP-binding cassette (ABC) transporter HmuUV for translocation into the cytoplasm. The mechanism of this process, heme transport across the inner membrane of pathogenic bacteria, is currently insufficiently understood at the molecular level. Here we describe the crystal structures of the substrate-free and heme-bound states of YpHmuT, revealing two lobes with a central binding cleft. Superposition of the apo and holo states reveals a minor tilting motion of the lobes surrounding concomitant with heme binding. Unexpectedly, YpHmuT binds two stacked hemes in a central binding cleft that is larger than those of the homologous periplasmic heme-binding proteins ShuT and PhuT, both of which bind only one heme. The hemes bound to YpHmuT are coordinated via a tyrosine side chain that contacts the Fe atom of one heme and a histidine that contacts the Fe atom of the other heme. The coordinating histidine is only conserved in a subset of periplasmic heme binding proteins suggesting that its presence predicts the ability to bind two heme molecules simultaneously. The structural data are supported by spectroscopic binding studies performed in solution, where up to two hemes can bind to YpHmuT. Isothermal titration calorimetry suggests that the two hemes are bound in discrete, sequential steps and with dissociation constants (K(D)) of ∼0.29 and ∼29 nM, which is similar to the affinities observed in other bacterial substrate binding proteins. Our findings suggest that the cognate ABC transporter HmuUV may simultaneously translocate two hemes per reaction cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2010.09.005 | DOI Listing |
Protein Sci
February 2025
Department of Chemistry, Institute of Biochemistry, BOKU University, Vienna, Austria.
Prokaryotic heme biosynthesis in Gram-positive bacteria follows the coproporphyrin-dependent heme biosynthesis pathway. The last step in this pathway is catalyzed by the enzyme coproheme decarboxylase, which oxidatively transforms two propionate groups into vinyl groups yielding heme b. The catalytic reaction cycle of coproheme decarboxylases exhibits four different states: the apo-form, the substrate (coproheme)-bound form, a transient three-propionate intermediate form (monovinyl, monopropionate deuteroheme; MMD), and the product (heme b)-bound form.
View Article and Find Full Text PDFIUBMB Life
January 2025
Department of Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
Cyanobacterial cytochrome c6 (Cyt c6) is crucial for electron transfer between the cytochrome b6f complex and photosystem I (PSI), playing a key role in photosynthesis and enhancing adaptation to extreme environments. This study investigates the high-resolution crystal structures of Cyt c6 from PCC 7942 and PCC 6803, focusing on its dimerization mechanisms and functional implications for photosynthesis. Cyt c6 was expressed in using a dual-plasmid co-expression system and characterized in both oxidized and reduced states.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromso̷, Norway.
Building upon an earlier study of heme-nitrosyl complexes (. , , 20496-20505), we examined a wide range of nonheme {FeNO} complexes (the superscript represents the Enemark-Feltham count) and two dinitrosyl iron complexes using DMRG-CASSCF calculations. Analysis of the wave functions in terms of resonance forms with different [π*(NO)] occupancies (where = 0-4 for mononitrosyl complexes) identified the dominant electronic configurations of {FeNO} and {FeNO} complexes as Fe-NO and Fe-NO, respectively, mirroring our previous findings on heme-nitrosyl complexes.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
The remarkable efficiency with which enzymes catalyze small-molecule reactions has driven their widespread application in organic chemistry. Here, we employ automated fast-flow solid-phase synthesis to access catalytically active full-length enzymes without restrictions on the number and structure of noncanonical amino acids incorporated. We demonstrate the total syntheses of iron-dependent myoglobin (BsMb) and sperm whale myoglobin (SwMb).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!