An earlier study revealed that 4-day-old mice, but not older mice, were infected with invasive Shigella strains. Here we attempted to determine the underlying mechanism that induces inflammation in the intestines of neonate mice after oral Shigella infection. Wild-type BALB/c mice of different ages (7, 14, and 35 days old) were orally administered GFP-expressing Shigella flexneri 5a M90T strain (5 x 10⁹ CFU) and analyzed for colonization 6h following infection. We found that Shigella localized in the epithelium, lamina propria, and crypt regions of the small intestines of 7-day-old BALB/c mice. Microarray analysis revealed that expression levels of cryptdin and various types of cryptdin-related mRNA (e.g., cryptrs-2, -5, -7, -12 and lysozyme) in the small intestines were significantly lower in 7-day-old than in older mice regardless of Shigella infection status. Interestingly, matrix metalloprotease-7 (matrilysin)-deficient (MAT⁻/⁻) mice of B6 background had more colonies and more severe symptoms of inflammation in the intestines than did wild-type B6 mice after oral Shigella challenge. This suggests that cryptdin-related antimicrobial molecules are indispensable for efficient protection against oral Shigella infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2010.09.100 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!