Unlabelled: Nanotechnology has introduced many exciting new tools for the treatment of human diseases. One of the obstacles in its application to that end is the lack of a fundamental understanding of the interaction that occurs between nanoparticles and living cells. This report describes the quantitative analysis of the kinetics and endocytic pathways involved in the uptake of anatase titanium dioxide (TiO(2)) nanoparticles into prostate cancer PC-3M cells. The experiments were performed with TiO(2) nanoconjugates: 6-nm nanoparticles with surface-conjugated fluorescent Alizarin Red S. Results obtained by flow cytometry, fluorescence microscopy, and inductively coupled plasma-mass spectrometry confirmed a complex nanoparticle-cell interaction involving a variety of endocytic mechanisms. The results demonstrated that a temperature, concentration, and time-dependent internalization of the TiO(2) nanoparticles and nanoconjugates occurred via clathrin-mediated endocytosis, caveolin-mediated endocytosis, and macropinocytosis.

From The Clinical Editor: The interaction and uptake of TiO(2) nanoparticles (6-nm) with prostate PC-3M cells was investigated and found to undergo temperature, time, and concentration dependent intracellular transport that was mediated through clathrin pits, caveolae, and macropinocytosis. These results suggest that nanoparticles may widely permeate through tissues and enter almost any active cell through a variety of biological mechanisms, posing both interesting opportunity and possible challenges for systemic use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062699PMC
http://dx.doi.org/10.1016/j.nano.2010.09.004DOI Listing

Publication Analysis

Top Keywords

pc-3m cells
12
tio2 nanoparticles
12
titanium dioxide
8
nanoparticles prostate
8
prostate cancer
8
cancer pc-3m
8
nanoparticles
7
endocytosis titanium
4
dioxide nanoparticles
4
cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!