Mechanisms determining characteristic age-of-onset for neurological diseases are largely unknown. Normal brain aging associates with robust and progressive transcriptome changes ("molecular aging"), but the intersection with disease pathways is mostly uncharacterized. Here, using cross-cohort microarray analysis of four human brain areas, we show that neurological disease pathways largely overlap with molecular aging and that subjects carrying a newly-characterized low-expressing polymorphism in a putative longevity gene (Sirtuin5; SIRT5(prom2)) have older brain molecular ages. Specifically, molecular aging was remarkably conserved across cohorts and brain areas, and included numerous developmental and transcription-regulator genes. Neurological disease-associated genes were highly overrepresented within age-related genes and changed almost unanimously in pro-disease directions, together suggesting an underlying genetic "program" of aging that progressively promotes disease. To begin testing this putative pathway, we developed and used an age-biosignature to assess five candidate longevity gene polymorphisms' association with molecular aging rates. Most robustly, aging was accelerated in cingulate, but not amygdala, of subjects carrying a SIRT5 promoter polymorphism (+9 years, p=0.004), in concordance with cingulate-specific decreased SIRT5 expression. This effect was driven by a set of core transcripts (+24 years, p=0.0004), many of which were mitochondrial, including Parkinson's disease genes, PINK-1 and DJ-1/PARK7, hence suggesting that SIRT5(prom2) may represent a risk factor for mitochondrial dysfunction-related diseases, including Parkinson's, through accelerated molecular aging of disease-related genes. Based on these results we speculate that a "common mechanism" may underlie age-of-onset across several neurological diseases. Confirming this pathway and its regulation by common genetic variants would provide new strategies for predicting, delaying, and treating neurological diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014380 | PMC |
http://dx.doi.org/10.1016/j.nbd.2010.09.016 | DOI Listing |
Lancet Reg Health Eur
March 2025
Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France.
Background: Ultra-processed food (UPF) consumption has been linked with higher risk of mortality. This multi-centre study investigated associations between food intake by degree of processing, using the Nova classification, and all-cause and cause-specific mortality.
Methods: This study analyzed data from the European Prospective Investigation into Cancer and Nutrition.
Front Genet
January 2025
Department of Orthopedics, First Hospital of Jiaxing, Jiaxing, China.
Background: Ferroptosis-related genes have been reported to play important roles in many diseases, but their molecular mechanisms in osteoporosis have not been elucidated.
Methods: Based on two independent GEO datasets (GSE35956 and GSE35958), and GSE35959 as the validation dataset, we comprehensively elucidated the pathological mechanism of ferroptosis-related genes in osteoporosis by GO analyses, KEGG analyses and a PPI network. Then, We used Western Blot (WB) and Quantitative real-time polymerase chain reaction (qPCR) to verify the expression level of KMT2D, a ferroptosis-related hub gene, in clinical samples.
Co-existing neuropathological comorbidities have been repeatedly reported to be extremely common in subjects dying with dementia due to Alzheimer disease. As these are likely to be additive to cognitive impairment, and may not be affected by molecularly-specific AD therapeutics, they may cause significant inter-individual response heterogeneity amongst subjects in AD clinical trials. Furthermore, while originally noted for the oldest old, recent reports have now documented high neuropathological comorbidity prevalences in younger old AD subjects, who are more likely to be included in clinical trials.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China.
Aging often triggers dental pulp fibrosis, resulting in clinical repercussions such as increased susceptibility to dental infections, compromised tooth vitality, and reduced responsiveness to dental interventions. Despite its prevalence, the precise molecular mechanisms underlying this condition remains unclear. Leveraging single-cell transcriptome analysis from both our own and publicly available datasets, we identified Ccrl2 macrophages as particularly vulnerable during the early stages of aging.
View Article and Find Full Text PDFPRX Life
June 2024
Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
Biomolecular condensates are dynamic intracellular entities defined by their sequence- and composition-encoded material properties. During aging, these properties can change dramatically, potentially leading to pathological solidlike states, the mechanisms of which remain poorly understood. Recent experiments reveal that the aging of condensates involves a complex interplay of solvent depletion, strengthening of sticker links, and the formation of rigid structural segments such as beta fibrils.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!