The NADP-dependent glycerol dehydrogenase (EC 1.1.1.72) from Gluconobacter oxydans is a member of family 11 of the aldo-keto reductase (AKR) enzyme superfamily; according to the systematic nomenclature within the AKR superfamily, the term AKR11B4 has been assigned to the enzyme. AKR11B4 is a biotechnologically attractive enzyme because of its broad substrate spectrum, combined with its distinctive regioselectivity and stereoselectivity. These features can be partially rationalized based on a 2-Å crystal structure of apo-AKR11B4, which we describe and interpret here against the functional complex structures of other members of family 11 of the AKR superfamily. The structure of AKR11B4 shows the AKR-typical (β/α)(8) TIM-barrel fold, with three loops and the C-terminal tail determining the particular enzymatic properties. In comparison to AKR11B1 (its closest AKR relative), AKR11B4 has a relatively broad binding cleft for the cosubstrate NADP/NADPH. In the crystalline environment, it is completely blocked by the C-terminal segment of a neighboring protomer. The structure reveals a conspicuous tryptophan residue (Trp23) that has to adopt an unconventional and strained side-chain conformation to permit cosubstrate binding. We predict and confirm by site-directed mutagenesis that Trp23 is an accelerator of (co)substrate turnover. Furthermore, we show that, simultaneously, this tryptophan residue is a critical determinant for substrate binding by the enzyme, while enantioselectivity is probably governed by a methionine residue within the C-terminal tail. We present structural reasons for these notions based on ternary complex models of AKR11B4, NADP, and either octanal, d-glyceraldehyde, or l-glyceraldehyde.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2010.09.049 | DOI Listing |
Methods Enzymol
January 2025
Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai, Nomicity, Ishikawa, Japan. Electronic address:
Site-directed RNA editing (SDRE) holds significant promise for treating genetic disorders resulting from point mutations. Gene therapy, for common genetic illnesses is becoming more popular and, although viable treatments for genetic disorders are scarce, stop codon mutation-related conditions may benefit from gene editing. Effective SDRE generally depends on introducing many guideRNA molecules relative to the target gene; however, large ratios cannot be achieved in the context of gene therapy applications.
View Article and Find Full Text PDFCarbohydr Res
January 2025
Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil. Electronic address:
Farnesol (FAR) belongs to terpenes group and is a sesquiterpene alcohol and a hydrophobic compound, which can be extracted from natural sources or obtained by organic chemical or biological synthesis. Recent advances in the field of nanotechnology allow the drawbacks of low drug solubility, which can improve the drug therapeutic index. Therefore, this study aimed to prepare the FAR inclusion complexes with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) through freeze-drying method, proposing their physicochemical characterization, comparing their toxicity, and evaluating their in vitro antibacterial activity.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
Botanical dietary supplements are widely used, but issues of authenticity, consistency, safety, and efficacy that complicate their poorly understood mechanism of action have prompted questions and concerns in the popular and scientific literature. Black cohosh ( L., syn.
View Article and Find Full Text PDFMicroorganisms
December 2024
Shanghai Veterinary Research Institute, 518 Ziyue Road, Minhang District, Shanghai 200241, China.
During the life cycle of the influenza virus, viral RNPs (vRNPs) are transported to the nucleus for replication. Given that a large number of progeny viral RNA occupies the nucleus, whether there is any host protein located in the nucleus that recognizes the viral RNA and inhibits the viral replication remains largely unknown. In this study, to explore the role of hnRNPH1 in influenza virus infection, we knocked down and over-expressed the hnRNPH1 proteins in 293T cells, then infected the cells with the influenza virus.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA.
We have previously reported peptides composed of sequential arginine (R) residues paired with tryptophan (W) or 3,3-diphenyl-L-alanine residues (Dip), such as cyclic peptides [RW] and [R(Dip)], as antibacterial agents. Herein, we report antibacterial and antifungal activities of five linear peptides, namely ((DipR)(WR)), ((DipR)(WR)), ((DipR)(WR)), ((DipR)(WR)), and (DipR)R, and five cyclic peptides [(DipR)(WR)], [(DipR)(WR)], [(DipR)(WR)], [(DipR)(WR)], and [DipR], containing alternate positively charged R and hydrophobic W and Dip residues against fungal, Gram-positive, and Gram-negative bacterial pathogens. The minimum inhibitory concentrations (MICs) of all peptides were determined by the micro-broth dilution method against , , , , , , , , and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!