Epilepsy is a dynamical disorder with intermittent crises (seizures) that until recently were considered unpredictable. In this study, we investigated the predictability of epileptic seizures in chronically epileptic rats as a first step towards a subsequent timely intervention for seizure control. We look at the epileptic brain as a nonlinear complex system that undergoes spatio-temporal state transitions and the Lyapunov exponents as indices of its stability. We estimated the spatial synchronization or desynchronization of the maximum short-term Lyapunov exponents (STLmax, approximate measures of chaos) among multiple brain sites over days of electroencephalographic (EEG) recordings from 5 rats that had developed chronic epilepsy according to the lithium pilocarpine rodent model of epilepsy. We utilized this synchronization of EEG dynamics for the construction of a robust seizure prediction algorithm. The parameters of the algorithm were optimized using receiver operator curves (ROCs) on training EEG datasets from each rat for the algorithm to provide maximum sensitivity and specificity in the prediction of their seizures. The performance of the algorithm was then tested on long-term testing EEG datasets per rat. The thus optimized prediction algorithm on the testing datasets over all rats yielded a seizure prediction mean sensitivity of 85.9%, specificity of 0.180 false predictions per hour, and prediction time of 67.6 minutes prior to a seizure onset. This study provides evidence that prediction of seizures is feasible through analysis of the EEG within the framework of nonlinear dynamics, and thus paves the way for just-in-time pharmacological or physiological inter-ventions to abort seizures tens of minutes before their occurrence.
Download full-text PDF |
Source |
---|
Clinics (Sao Paulo)
January 2025
Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea. Electronic address:
Introduction: This study aimed to investigate the associations among seizures, clinical characteristics, and brain injury on Magnetic Resonance Imaging (MRI) in infants with Hypoxic Ischemic Encephalopathy (HIE), and to determine whether these findings can predict unfavorable neurodevelopmental outcomes.
Method: Clinical and electrographic seizures were assessed by amplitude-integrated electroencephalogram, and the extent of brain injury was evaluated by using MRI. At 12‒24 months of age, developmental impairment or death was assessed.
Brain
January 2025
Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA.
Brain stimulation has, for many decades, been considered as a potential solution for the unmet needs of the many people living with drug-resistant epilepsy. Clinically, there are several different approaches in use, including vagus nerve stimulation (VNS), deep brain stimulation of the thalamus, and responsive neurostimulation (RNS). Across populations of patients, all deliver reductions in seizure load and SUDEP risk, yet do so variably, and the improvements seem incremental rather than transformative.
View Article and Find Full Text PDFFront Neuroimaging
December 2024
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
Objective: Resting-state functional MRI (rs-fMRI) may localize the seizure onset zone (SOZ) for epilepsy surgery, when compared to intracranial EEG and surgical outcomes, per a prior meta-analysis. Our goals were to further characterize this agreement, by broadening the queried rs-fMRI analysis subtypes, comparative modalities, and same-modality comparisons, hypothesizing SOZ-signal strength may overcome this heterogeneity.
Methods: PubMed, Embase, Scopus, Web of Science, and Google Scholar between April 2010 and April 2020 via PRISMA guidelines for SOZ-to-established-modalities were screened.
Front Neurol
December 2024
Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
Background: Stereoelectroencephalography (SEEG), as a minimally invasive method that can stably collect intracranial electroencephalographic information over long periods, has increasingly been applied in the diagnosis and treatment of intractable epilepsy in recent years. Over the past 20 years, with the advancement of materials science and computer science, the application scenarios of SEEG have greatly expanded. Bibliometrics, as a method of scientifically analyzing published literature, can summarize the evolutionary process in the SEEG field and offer insights into its future development prospects.
View Article and Find Full Text PDFEpilepsy Behav
December 2024
Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; Neurology Unit, Department of Medicine, Hospital Canselor Tuanku Muhriz, Kuala Lumpur, Malaysia.
Background: There are still insufficient data on caregiver burden among caregivers of adult people with epilepsy (PWE), particularly in Malaysia. This study aims to explore the level of perceived caregiver burden among the informal caregivers caring for PWE, its predicting factors associated with caregiver burden, and the impact of this caregiver burden on their psychological health.
Methods: In this cross-sectional study, caregivers of adult PWE attending the neurology outpatient clinic at Hospital Canselor Tuanku Muhriz (HCTM) completed a comprehensive questionnaire comprising demographic data of participants and care recipients (adult PWE).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!