Our previous study has reported that electroacupuncture (EA) promotes survival, differentiation of bone marrow mesenchymal stem cells (MSCs), and functional improvement in spinal cord-transected rats. In this study, we further investigated the structural bases of this functional improvement and the potential mechanisms of axonal regeneration in injured spinal cord after MSCs and EA treatment. Five experimental groups, 1) sham control (Sham-control); 2) operated control (Op-control); 3) electroacupuncture treatment (EA); 4) MSCs transplantation (MSCs), and 5) MSCs transplantation combined with electroacupuncture (MSCs + EA), were designed for this study. Western blots and immunohistochemical staining were used to assess the fibrillary acidic protein (GFAP) and chondroitin sulfate proteoglycans (CSPGs) proteins expression. Basso, Beattie, Bresnahan (BBB) locomotion test, cortical motor evoked potentials (MEPs), and anterograde and retrograde tracing were utilized to assess cortical-spinal neuronal projection regeneration and functional recovery. In the MSCs + EA group, increased labeling descending corticospinal tract (CST) projections into the lesion site showed significantly improved BBB scales and enhanced motor evoked potentials after 10 weeks of MSCs transplant and EA treatment. The structural and functional recovery after MSCs + EA treatment may be due to downregulated GFAP and CSPGs protein expression, which prevented axonal degeneration as well as improved axonal regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3727/096368910X528102 | DOI Listing |
Polymers (Basel)
December 2024
Department of Neurological Surgery, The University of Washington, Seattle, WA 98109, USA.
Spinal cord trauma leads to the destruction of the highly organized cytoarchitecture that carries information along the axis of the spinal column. Currently, there are no clinically accepted strategies that can help regenerate severed axons after spinal cord injury (SCI). Hydrogels are soft biomaterials with high water content that are widely used as scaffolds to interface with the central nervous system (CNS).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph's Hospital and Medical Center (SJHMC), Phoenix, AZ 85013, USA.
Traumatic optic neuropathy (TON) has been regarded a vision-threatening condition caused by either ocular or blunt/penetrating head trauma, which is characterized by direct or indirect TON. Injury happens during sports, vehicle accidents and mainly in military war and combat exposure. Earlier, we have demonstrated that remote ischemic post-conditioning (RIC) therapy is protective in TON, and here we report that AMPKα1 activation is crucial.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan.
Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB) exacerbating damage by allowing harmful substances and immune cells to infiltrate spinal neural tissues from the vasculature. This leads to inflammation, oxidative stress, and impaired axonal regeneration. The BSCB, essential for maintaining spinal cord homeostasis, is structurally similar to the blood-brain barrier.
View Article and Find Full Text PDFCells
December 2024
Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China.
Amyotrophic lateral sclerosis (ALS), commonly known as motor neuron disease, is a neurodegenerative disorder characterized by the progressive degeneration of both upper and lower motor neurons. This pathological process results in muscle weakness and can culminate in paralysis. To date, the precise etiology of ALS remains unclear.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P.R. China. Electronic address:
Background: Peripheral nerve injury (PNI) is a common clinical problem that can result in partial or complete loss of sensory, motor, and autonomic functions. Tetrahydropalmatine (THP), a Corydalis yanhusuo-derived phytochemical alkaloid, possesses hypnotic, soothing, analgesic, and other effects, but little is known about the effect of THP on moderating peripheral nerve regeneration and its possible underlying mechanism of action.
Purpose: In this study, we aim to elucidate the protective function of THP on PNI and further reveal the underlying pharmacological mechanisms.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!