We perform extensive lattice Monte Carlo simulations of protein folding to construct and compare the equilibrium and the kinetic transition state ensembles of a model protein that folds to the native state with two-state kinetics. The kinetic definition of the transition state is based on the folding probability analysis method, and therefore on the selection of conformations with 0.4
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3485286 | DOI Listing |
Am J Respir Crit Care Med
January 2025
Indiana University School of Medicine, Pediatric Pulmonary Medicine, Indianapolis, Indiana, United States.
Sci Robot
January 2025
Biorobotics Laboratory, Soft Robotics Research Center, Institute of Advanced Machines and Design, Department of Mechanical Engineering, Institute of Engineering, Seoul National University, Seoul, Republic of Korea.
Snap-through, a rapid transition of a system from an equilibrium state to a nonadjacent equilibrium state, is a valuable design element of soft devices for converting a monolithic stimulus into systematic responses with impulsive motions. A common way to benefit from snap-through is to embody it within structures and materials, such as bistable structures. Torque-reversal mechanisms discovered in nature, which harness snap-through instability via muscular forces, may have comparative advantages.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan.
Background: Chronic respiratory failure (CRF) is a critical complication in patients with chronic obstructive pulmonary disease (COPD) and is characterized by an increase in the arterial-alveolar oxygen gradient (A-aDO2). The long-term trajectory and prognostic significance remain unclear. This study aimed to assess the prognostic impact of A-aDO2 and elucidate its trajectory over ten years.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Physiology and Biochemistry, Faculty of Physical Education and Sport Science, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland.
The purpose of this study was to determine the effective warm-up protocol using an added respiratory dead space (ARDS) 1200 ml volume mask to determine hypercapnic conditions, on the swimming velocity of the 50 m time trial front crawl. Eight male members of the university swimming team, aged 19-25, performed three different warm-up protocols: 1) standardized warm-up in water (WUCON); 2) hypercapnic warm-up in water (WUARDS); 3) hypercapnic a 20-minute transition phase on land, between warm-up in water and swimming test (RE-WUARDS). The three warm-up protocols were implemented in random order every 7th day.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!