This study aims to improve the tensile strength and elastic modulus of nano-apatite/poly(ε-caprolactone) composites by silane-modification of the nano-apatite fillers. Three silane coupling agents were used to modify the surfaces of nano-apatite particles and composites of silanized apatite and PCL were prepared by a technique incorporating solvent dispersion, melting-blend and hot-pressing. The results showed that the silane coupling agents successfully modified the surfaces of nano-apatite fillers, and the crystallization temperatures of the silanized apatite/PCL composites were the higher than that of the non-silanized control material, although the melting temperature of the composites remained almost unaffected by silanization. The ultimate tensile strength and elastic modulus of the silanized composites reached 22.60 MPa and 1.76 GPa, as a result of the improved interfacial bonding and uniform dispersion of nano-apatite fillers. This study shows that the processing technique and silanization of nano-apatite particles can effectively improve the tensile strength and elastic modulus of nano-apatite/PCL composites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-010-4158-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!