This study aims to improve the tensile strength and elastic modulus of nano-apatite/poly(ε-caprolactone) composites by silane-modification of the nano-apatite fillers. Three silane coupling agents were used to modify the surfaces of nano-apatite particles and composites of silanized apatite and PCL were prepared by a technique incorporating solvent dispersion, melting-blend and hot-pressing. The results showed that the silane coupling agents successfully modified the surfaces of nano-apatite fillers, and the crystallization temperatures of the silanized apatite/PCL composites were the higher than that of the non-silanized control material, although the melting temperature of the composites remained almost unaffected by silanization. The ultimate tensile strength and elastic modulus of the silanized composites reached 22.60 MPa and 1.76 GPa, as a result of the improved interfacial bonding and uniform dispersion of nano-apatite fillers. This study shows that the processing technique and silanization of nano-apatite particles can effectively improve the tensile strength and elastic modulus of nano-apatite/PCL composites.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-010-4158-6DOI Listing

Publication Analysis

Top Keywords

nano-apatite fillers
16
silane coupling
12
coupling agents
12
tensile strength
12
strength elastic
12
elastic modulus
12
improve tensile
8
surfaces nano-apatite
8
nano-apatite particles
8
composites
7

Similar Publications

This study aims to improve the tensile strength and elastic modulus of nano-apatite/poly(ε-caprolactone) composites by silane-modification of the nano-apatite fillers. Three silane coupling agents were used to modify the surfaces of nano-apatite particles and composites of silanized apatite and PCL were prepared by a technique incorporating solvent dispersion, melting-blend and hot-pressing. The results showed that the silane coupling agents successfully modified the surfaces of nano-apatite fillers, and the crystallization temperatures of the silanized apatite/PCL composites were the higher than that of the non-silanized control material, although the melting temperature of the composites remained almost unaffected by silanization.

View Article and Find Full Text PDF

Hydrothermally synthesized acicular nano-apatite (Nap) was used as filler to make composites with a polyethylene glycol/poly(butylene terephthalate) (PEG/PBT) block copolymer (Polyactive 70:30). The Nap had a particle diameter of 9-25 nm and a length of 80-200 nm. The mechanical properties and the physiochemical characteristics of the composites, such as Young's modulus, swelling degree in water and the calcification behaviour, have been determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!