Studies on the role of mitochondrial fission/fusion (MFF) proteins in the heart have been initiated recently due to their biological significance in cell metabolism. We hypothesized that the expression of MFF proteins is affected by post-infarction remodeling and in vitro cardiomyocyte hypertrophy, and serves as a target for the Na(+)/H(+) exchanger 1 (NHE-1) inhibition. Post-infarction remodeling was induced in Sprague-Dawley rats by coronary artery ligation (CAL) while in vitro hypertrophy was induced in cardiomyocytes by phenylephrine (PE). Mitochondrial fission (Fis1, DRP1) and fusion (Mfn2, OPA1) proteins were analyzed in heart homogenates and cell lysates by Western blotting. Our results showed that 12 and 18 weeks after CAL, Fis1 increased by 80% (P < 0.01) and 31% (P < 0.05), and Mfn2 was reduced by 17% (P < 0.05) and 22% (P < 0.05), respectively. OPA1 was not changed at 12 weeks, although its expression decreased by 18% (P < 0.05) with 18 weeks of ligation. MFF proteins were also affected by PE-induced hypertrophy that was dependent on mitochondrial permeability transition pore opening and oxidative stress. The NHE-1-specific inhibitor EMD-87580 (EMD) attenuated changes in the expression of MFF proteins in both the models of hypertrophy. The effect of EMD was likely mediated, at least in part, through its direct action on mitochondria since Percoll-purified mitochondria and mitoplasts have been shown to contain NHE-1. Our study provides the first evidence linking cardiac hypertrophy with MFF proteins expression that was affected by NHE-1 inhibition, thus suggesting that MFF proteins might be a target for pharmacotherapy with anti-hypertrophic drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00395-010-0122-3 | DOI Listing |
Cytometry A
December 2024
Laboratory of Hyperspectral Imaging of Surgical Targets, Center of Excellence, L.A. Orbeli Institute of Physiology, National Academy of Sciences, Yerevan, Armenia.
Identifying factors that contribute to the transition to the dilated phase in cardiac ischemia is a critical challenge in heart failure treatment. Currently, no effective therapies exist for this ischemic complication, and the mechanisms driving left ventricular dilatation during chronic post-infarction remodeling remain poorly understood. One potential pathological process leading to ventricular dilatation involves specific compensatory rearrangements in the border zone adjacent to the infarct, which isolates the intact myocardium from inflammation at the scar edge.
View Article and Find Full Text PDFFuture Cardiol
December 2024
Department of Physiology, Institute of Postgraduate Medical Education & Research-SSKM Hospital, Kolkata, India.
Aims: To objectively characterize the spatial-velocity dynamics of the QRS-loop in the vectorcardiogram (VCG) of patients with acute myocardial infarction (AMI).
Methods: VCG was constructed as a space curve directly with three quasi-orthogonal leads I, aVF and V2 recorded by conventional ECG of 25 healthy individuals and 50 AMI patients. Spatial velocity (SV) of the dynamic QRS loop, spatial distance (SD), and spatial magnitude (SM) were recorded, along with axis-specific component attributes of vector magnitude such as ΔX, ΔY, and ΔZ.
Biomater Sci
December 2024
Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
Myocardial infarction (MI) remains one of the most common and lethal cardiovascular diseases (CVDs), leading to the deterioration of cardiac function due to myocardial cell necrosis and fibrous scar tissue formation. Myocardial infarction (MI) remains one of the most common and lethal cardiovascular diseases (CVDs), leading to the deterioration of cardiac function due to myocardial cell necrosis and fibrous scar tissue formation. After MI, the anisotropic structural properties of myocardial tissue are destroyed, and its mechanical and electrical microenvironment also undergoes a series of pathological changes, such as ventricular wall stiffness, abnormal contraction, conduction network disruption, and irregular electrical signal propagation, which may further induce myocardial remodeling and even lead to heart failure.
View Article and Find Full Text PDFESC Heart Fail
October 2024
University Hospital St Josef-Hospital Bochum, Cardiology and Rhythmology, Ruhr University Bochum, Bochum, Germany.
The immune system has long been recognized as a key driver in the progression of heart failure (HF). However, clinical trials targeting immune effectors have consistently failed to improve patient outcome across different HF aetiologies. The activation of the immune system in HF is complex, involving a broad network of pro-inflammatory and immune-modulating components, which complicates the identification of specific immune pathways suitable for therapeutic targeting.
View Article and Find Full Text PDFPLoS One
September 2024
Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
Myocardial fibrosis (MF) is a major cause of morbidity and mortality worldwide. Qili Qiangxin capsule (QLQX) is a traditional Chinese medicine (TCM) formula used for treating MF, QLQX can affect ventricular remodeling by regulating collagen deposition; however, the specific mechanism by which QLQX modulates collagen homeostasis remains unclear. Thus, this study aimed to explore the effect of QLQX on collagen fibers and its mechanism of action in rats after myocardial infarction (MI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!