Urokinase-type plasminogen activator receptor (uPAR) plays a role in cellular responses which include cellular adhesion, differentiation, proliferation and migration. The aim of this study was to clarify the role of uPAR on the development of adipose tissue. To clarify the role of uPAR on adipogenesis, we examined the effect of uPAR overexpression and uPAR deficiency on the adipocyte differentiation. Adipocyte differentiation was induced by incubation of 3T3-L1 cells with differentiation media containing insulin, dexamethasone, and 1-methyl-3-isobutyl-xanthin. uPAR overexpression by transfection of uPAR expression vector induced adipocyte differentiation. In addition, we examined the difference in adipocyte differentiation of mesenchymal stem cells from wild-type mice and uPAR knockout (uPAR-/-) mice. The uPAR deficiency attenuated differentiation media-induced adipocyte differentiation. Moreover, we found that the inhibition of phosphatidylinositol 3-kinase (PI3K) pathway attenuated uPAR overexpression-induced adipocyte differentiation, and uPAR overexpression induced the activation of Akt. We also found that an increase of the adipose tissue mass in uPAR-/- mice was less than that observed in wild-type mice. The present results suggest that uPAR plays a pivotal role in the development of adipose tissue through PI3K/Akt pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1160/TH10-02-0101DOI Listing

Publication Analysis

Top Keywords

adipocyte differentiation
24
adipose tissue
16
development adipose
12
upar
12
upar overexpression
12
mice upar
12
differentiation
9
urokinase-type plasminogen
8
plasminogen activator
8
activator receptor
8

Similar Publications

Obesity and type 2 diabetes (T2D) are strongly linked to abnormal adipocyte metabolism and adipose tissue (AT) dysfunction. However, existing adipose tissue models have limitations, particularly in the stable culture of fat cells that maintain physiologically relevant phenotypes, hindering a deeper understanding of adipocyte biology and the molecular mechanisms behind differentiation. Current model systems fail to fully replicate in vivo metabolism, posing challenges in adipose research.

View Article and Find Full Text PDF

Background: is a differentially expressed gene (DEG) between M1 and M2 macrophages. This study explained why it causes opposite effects in different circumstances.

Methods: Gene expression profiles of various cell subsets were compared by mining a public database.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapy due to their self-renewal capability, multilineage differentiation potential, and immunomodulatory effects. The molecular characteristics of MSCs are influenced by their location. Recently, epidural fat (EF) and EF-derived MSCs (EF-MSCs) have garnered attention due to their potential benefits to the spinal microenvironment and their high expression of neural SC markers.

View Article and Find Full Text PDF

Bisphenol A-Induced Cancer-Associated Adipocytes Promotes Breast Carcinogenesis Via CXCL12/AKT Signaling.

Mol Cell Endocrinol

January 2025

Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China. Electronic address:

Bisphenol A (BPA), a commonly used plastic additive, is believed to cause obesity. As an environmental endocrine disruptor, BPA is closely associated with the onset and progression of BC. However, the molecular mechanisms underlying the promotion of breast cancer by BPA remain unclear.

View Article and Find Full Text PDF

Epiregulin ameliorates ovariectomy-induced bone loss through orchestrating the differentiation of osteoblasts and osteoclasts.

J Bone Miner Res

January 2025

NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.

Epiregulin plays a role in a range of biological activities including malignancies. This study aims to investigate the potential contribution of epiregulin to bone cell differentiation and bone homeostasis. The data showed that epiregulin expression was upregulated during osteogenesis but downregulated during adipogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!