Cocaine- and amphetamine-regulated transcript (CART) signaling within the paraventricular thalamus modulates cocaine-seeking behaviour.

PLoS One

Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy and the Centre for Brain and Mental Health Research, University of Newcastle and the Hunter Medical Research Institute, Newcastle, New South Wales, Australia.

Published: September 2010

Background: Cocaine- and amphetamine-regulated transcript (CART) has been demonstrated to play a role in regulating the rewarding and reinforcing effects of various drugs of abuse. A recent study demonstrated that i.c.v. administration of CART negatively modulates reinstatement of alcohol seeking, however, the site(s) of action remains unclear. We investigated the paraventricular thalamus (PVT) as a potential site of relapse-relevant CART signaling, as this region is known to receive dense innervation from CART-containing hypothalamic cells and to project to a number of regions known to be involved in mediating reinstatement, including the nucleus accumbens (NAC), medial prefrontal cortex (mPFC) and basolateral amygdala (BLA).

Methodology/principal Findings: Male rats were trained to self-administer cocaine before being extinguished to a set criterion. One day following extinction, animals received intra-PVT infusions of saline, tetrodotoxin (TTX; 2.5 ng), CART (0.625 µg or 2.5 µg) or no injection, followed by a cocaine prime (10 mg/kg, i.p.). Animals were then tested under extinction conditions for one hour. Treatment with either TTX or CART resulted in a significant attenuation of drug-seeking behaviour following cocaine-prime, with the 2.5 µg dose of CART having the greatest effect. This effect was specific to the PVT region, as misplaced injections of both TTX and CART resulted in responding that was identical to controls.

Conclusions/significance: We show for the first time that CART signaling within the PVT acts to inhibit drug-primed reinstatement of cocaine seeking behaviour, presumably by negatively modulating PVT efferents that are important for drug seeking, including the NAC, mPFC and BLA. In this way, we identify a possible target for future pharmacological interventions designed to suppress drug seeking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944892PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0012980PLOS

Publication Analysis

Top Keywords

cart signaling
12
ttx cart
12
cart
9
cocaine- amphetamine-regulated
8
amphetamine-regulated transcript
8
transcript cart
8
paraventricular thalamus
8
drug seeking
8
signaling paraventricular
4
thalamus modulates
4

Similar Publications

Despite the success of combination antiretroviral therapy (cART) to suppress HIV replication, HIV persists in a long-lived reservoir that can give rise to rebounding viremia upon cART cessation. The translationally active reservoir consists of HIV-infected cells that continue to produce viral proteins even in the presence of cART. These active reservoir cells are implicated in the resultant viremia upon cART cessation and likely contribute to chronic immune activation in people living with HIV (PLWH) on cART.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell therapy plays a critical role in the treatment of B-cell hematologic malignancies. The combination of PD-1 inhibitors and CAR-T has shown encouraging results in treating patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL). However, there are still cases where treatment is ineffective.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell therapies have revolutionized the landscape of cancer treatment, in particular in the context of hematologic malignancies. However, for solid tumors that lack tumor-specific antigens, CAR-T cells can infiltrate and attack nonmalignant tissues expressing the CAR target antigen, leading to on-target, off-tumor toxicity. Severe on-target, off-tumor toxicities have been observed in clinical trials of CAR-T therapy for solid tumors, highlighting the need to address this issue.

View Article and Find Full Text PDF

Background: Chimeric antigen receptor (CAR)-T-cell therapy is a breakthrough in the field of cancer immunotherapy, wherein T cells are genetically modified to recognize and attack cancer cells. Delivery of the CAR gene is a critical step in this therapy and is usually achieved by transducing patient T cells with a lentiviral vector (LV). Because the LV is an essential component of CAR-T manufacturing, there is a need for simple bioassays that reflect the mechanism of action (MOA) of the LV and can measure LV potency with accuracy and specificity.

View Article and Find Full Text PDF

PD1-TLR10 fusion protein enhances the antitumor efficacy of CAR-T cells in colon cancer.

Int Immunopharmacol

January 2025

TriArm Therapeutics, Niudun Road 200, 201203 Shanghai, China. Electronic address:

Background: The immunosuppressive microenvironment negatively affects the efficacy of chimeric antigen receptor T (CAR-T) cells in solid tumors. Fusion protein that combining extracellular domain of inhibitory checkpoint protein and the cytoplasmic domain of stimulatory molecule may improve the efficacy of CAR-T cells by reversing the suppressive signals.

Methods: To generate optimal PD1-TLR10 fusion proteins, PD1 extracellular domain and TLR10 intracellular domain were connected by transmembrane domain from PD1, CD28, or TLR10, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!