We developed a method for immobilization of biomolecules onto thiol functionalized surfaces according to UV diffraction patterns. UV light-assisted molecular immobilization proceeds through the formation of free, reactive thiol groups that can bind covalently to thiol reactive surfaces. We demonstrate that, by shaping the pattern of the UV light used to induce molecular immobilization, one can control the pattern of immobilized molecules onto the surface. Using a single-aperture spatial mask, combined with the Fourier transforming property of a focusing lens, we show that submicrometer (0.7 μm) resolved patterns of immobilized prostate-specific antigen biomolecules can be created. If a dual-aperture spatial mask is used, the results differ from the expected Fourier transform pattern of the mask. It appears as a superposition of two diffraction patterns produced by the two apertures, with a fine structured interference pattern superimposed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.49.005344DOI Listing

Publication Analysis

Top Keywords

diffraction patterns
12
immobilization biomolecules
8
molecular immobilization
8
spatial mask
8
immobilization
4
biomolecules surfaces
4
surfaces ultraviolet
4
ultraviolet light
4
light diffraction
4
patterns
4

Similar Publications

Super-resolution microscopy as drug discovery tool.

SLAS Discov

January 2025

Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4ZF. Electronic address:

At the turn of the century a fundamental resolution barrier in fluorescence microscopy known as the diffraction limit was broken, giving rise to the field of super-resolution microscopy. Subsequent nanoscopic investigation with visible light revolutionised our understanding of how previously unknown molecular features give rise to the emergent behaviour of cells. It transpires that the devil is in these fine molecular details, and essential nanoscale processes were found everywhere researchers chose to look.

View Article and Find Full Text PDF

A bio-fabrication approach is a novel way to develop chitosan-stabilized magnesium oxide nanomaterials (cMgO-NMs). The process involves utilizing polymeric chitosan as the reducing and stabilizing agent. The characteristics of the developed cMgO-NMs were determined using various spectroscopical techniques.

View Article and Find Full Text PDF

Water pollution, oxidative stress and the emergence of multidrug-resistant bacterial strains are significant global threats that require urgent attention to protect human health. Nanocomposites that combine multiple metal oxides with carbon-based materials have garnered significant attention due to their synergistic physicochemical properties and versatile applications in both environmental and biomedical fields. In this context, the present study was aimed at synthesizing a ternary metal-oxide nanocomposite consisting of silver oxide, copper oxide, and zinc oxide (ACZ-NC), along with a multi-walled carbon nanotubes modified ternary metal-oxide nanocomposite (MWCNTs@ACZ-NC).

View Article and Find Full Text PDF

Organic cocrystals have garnered significant research attention owing to their distinctive properties and promising applications. However, challenges in molecular structure design and control of intermolecular interactions continue to impede further advancements. In this study, two novel cocrystals were successfully formed from a series of synthesized benzotriazole derivatives.

View Article and Find Full Text PDF

Copper isotopes and their complexes are intensively studied due to their high potential for applications in radiodiagnosis and radiotherapy. Here, we study the Cu complex of 1,8-bis(2-hydroxybenzyl)-cyclam (HL), which forms an unexpected variety of isomers differing in the mutual orientation of the substituents on the cyclam nitrogen atoms, the protonation of the phenolate pendant, and the ligand denticity. The interconversion of the isomers is rather slow, which made the isolation, identification and investigation of some of the individual species possible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!