All-optical clocked delay flip-flop using a single terahertz optical asymmetric demultiplexer-based switch: a theoretical study.

Appl Opt

Mechanical Operation (Stage-II), Kolaghat Thermal Power Station, WBPDCL, Mecheda, Purbamedinipur, KTPP sub post office, 721137 West Bengal, India.

Published: October 2010

A flip-flop (FF) is a kind of latch and the simplest form of memory device, which stores various values either temporarily or permanently. Optical FF memories form a fundamental building block for all-optical packet switches in next-generation communication networks. An all-optical clocked delay FF using a single terahertz optical asymmetric demultiplexer-based interferometric switch is proposed and described. Numerical simulation results are also reported.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.49.005226DOI Listing

Publication Analysis

Top Keywords

all-optical clocked
8
clocked delay
8
single terahertz
8
terahertz optical
8
optical asymmetric
8
asymmetric demultiplexer-based
8
delay flip-flop
4
flip-flop single
4
demultiplexer-based switch
4
switch theoretical
4

Similar Publications

The millimeter-wave wireless transmission system is widely regarded as a promising solution for applications of future 6G communication. This paper presents an experimental comparison between all-optical and all-electric receivers for millimeter-wave communication systems over a 15 m wireless link and demonstrates 200 m and 2 km real-time uncompressed HD video transmission using an all-optical transceiver at 100 GHz. The systems leverage photonics-assisted heterodyne beating techniques at the transmitter, while the receivers employ either an avalanche photodiode (APD)-based all-optical approach or an envelope detection-based all-electric approach.

View Article and Find Full Text PDF

Quantum information processors benefit from high clock frequencies to fully harness quantum advantages before they are lost to decoherence. All-optical systems offer unique benefits due to their inherent 100-THz carrier frequency, enabling the development of THz-clock frequency processors. However, the bandwidth of quantum light sources and measurement devices has been limited to the MHz range, with nonclassical state generation rates in the kHz range.

View Article and Find Full Text PDF

As a single-particle characterization technique, optical microscopy has transformed our understanding of structure-function relationships of plasmonic nanoparticles, but the need for -correlated electron microscopy to obtain structural information handicaps an otherwise exceptional high-throughput technique. Here, we present an all-optical alternative to electron microscopy to accurately and quickly extract structural information about single gold nanorods (Au NRs) using calcite-assisted localization and kinetics (CLocK) microscopy. Color CLocK images of single Au NRs allow scattering from the longitudinal and transverse plasmon modes to be imaged simultaneously, encoding spectral data in CLocK images that can then be extracted to obtain Au NR size and orientation.

View Article and Find Full Text PDF

Narrow linewidth lasers have a wide range of applications in the fields of coherent optical communications, atomic clocks, and measurement. Lithium niobate material possesses excellent electro-optic and thermo-optic properties, making it an ideal photonic integration platform for a new generation. The light source is a crucial element in large-scale photonic integration.

View Article and Find Full Text PDF

2D materials with broken inversion symmetry posses an extra degree of freedom, the valley pseudospin, that labels in which of the two energy-degenerate crystal momenta, K or K', the conducting carriers are located. It has been shown that shining circularly-polarized light allows to achieve close to 100% of valley polarization, opening the way to valley-based transistors. Yet, switching of the valley polarization is still a key challenge for the practical implementation of such devices due to the short valley lifetimes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!