Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments.

Acta Biomater

Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Shogoin, Kawahara-cho 54, Sakyo-ku, Kyoto 606-8507, Japan.

Published: March 2011

Ti15Zr4Nb4Ta and Ti29Nb13Ta4.6Zr, which do not contain the potentially cytotoxic elements V and Al, represent a new generation of alloys with improved corrosion resistance, mechanical properties, and cytocompatibility. Recently it has become possible for the apatite forming ability of these alloys to be ascertained by treatment with alkali, CaCl2, heat, and water (ACaHW). In order to confirm the actual in vivo bioactivity of commercially pure titanium (cp-Ti) and these alloys after subjecting them to ACaHW treatment at different temperatures, the bone bonding strength of implants made from these materials was evaluated. The failure load between implant and bone was measured for treated and untreated plates at 4, 8, 16, and 26 weeks after implantation in rabbit tibia. The untreated implants showed almost no bonding, whereas all treated implants showed successful bonding by 4 weeks, and the failure load subsequently increased with time. This suggests that a simple and economical ACaHW treatment could successfully be used to impart bone bonding bioactivity to Ti metal and Ti-Zr-Nb-Ta alloys in vivo. In particular, implants heat treated at 700 °C exhibited significantly greater bone bonding strength, as well as augmented in vitro apatite formation, in comparison with those treated at 600 °C. Thus, with this improved bioactive treatment process these advantageous Ti-Zr-Nb-Ta alloys can serve as useful candidates for orthopedic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2010.09.026DOI Listing

Publication Analysis

Top Keywords

bone bonding
16
ti-zr-nb-ta alloys
12
bonding bioactivity
8
bioactivity metal
8
metal ti-zr-nb-ta
8
acahw treatment
8
bonding strength
8
failure load
8
alloys
6
bone
5

Similar Publications

G-CSF modulates innate and adaptive immunity via the ligand-receptor pathway of binding GCSFR in Flounder (Paralichthys olivaceus).

Fish Shellfish Immunol

January 2025

Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, PR China. Electronic address:

Granulocyte colony stimulating factor (G-CSF) has been shown in mammalia to activate a series of signal transduction systems and exert various biological effects, such as controlling the differentiation, proliferation, and survival of granulocytes, promoting the movement of hematopoietic stem cells from the bone marrow to the bloodstream, and triggering the development of T cells, dendritic cells, and immune tolerance in transplants. In this study, the mRNA of flounder G-CSF (PoG-CSF) and its receptor (PoGCSFR) were detected and widely expressed in all examined tissues with the highest expression in peritoneal cells. G-CSF and GCSFR cells were observed to be abundantly distributed in the leukocytes from the peritoneal cavity, followed by head kidney.

View Article and Find Full Text PDF

Correlations between spinopelvic parameters and health-related quality of life in degenerative lumbar scoliosis patients before and after long -level fusion surgery.

BMC Musculoskelet Disord

January 2025

Department of Orthopedics, Peking University Third Hospital, No. 49. North Garden Street, Hai Dian District, Beijing, 100191, People's Republic of China.

Background: For degenerative lumbar scoliosis (DLS), prior studies mainly focused on the preoperative relationship between spinopelvic parameters and health-related quality of life (HRQoL), lacking an exhaustive evaluation of the postoperative situation. Therefore, the postoperative parameters most closely bonded with clinical outcomes has not yet been well-defined in DLS patients. The objective of this study was to comprehensively assess the correlation between radiographic parameters and HRQoL before and after surgery, and to identified the most valuable spinopelvic parameters for postoperative curative effect.

View Article and Find Full Text PDF

Wet adhesives for hard tissues.

Acta Biomater

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. Electronic address:

The development of wet adhesives capable of bonding in aqueous environments, particularly for hard tissues such as bone, tooth, and cartilage, remains a significant challenge in material chemistry and biomedical research. Currently available hard tissue adhesives in clinical practice lack well-defined wet adhesion properties. Nature offers valuable inspiration through the adhesive mechanisms of marine organisms, advancing the design of bioinspired wet adhesives.

View Article and Find Full Text PDF

Thermoresponsive dual-network chitosan-based hydrogels with demineralized bone matrix for controlled release of rhBMP9 in the treatment of femoral head osteonecrosis.

Carbohydr Polym

March 2025

Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China. Electronic address:

In an effort to mitigate or reverse the pathological progression of early-stage osteonecrosis of the femoral head (ONFH), this study employed a promising strategy that involves the sustained delivery of osteogenic factors to augment core decompression, facilitated by the use of composite hydrogels. Specifically, a hydrogel was synthesized by blending chitosan, Pluronic F-127, and tripolyphosphate, utilizing both ionic bonding and copolymer micelle cross-linking techniques. This hydrogel demonstrated exceptional biocompatibility, temperature responsiveness, pH-dependent biodegradation, and controlled release properties.

View Article and Find Full Text PDF

Background: Femoral head necrosis (FHN) is a debilitating bone disease affecting an estimated 8 million people worldwide. Although specific drugs for FHN have limitations, targeted therapies have shown promising results. The significance of this study is underscored by the high prevalence of FHN, the limitations of current treatments, and the potential of targeted drugs and natural compounds for effective therapeutic interventions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!